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Federated Learning (FL)
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Federated Learning (FL)

Algorithm 1 Federated Averaging

Inputs: Number of communication rounds 7'; Number of
local epochs E; Size of minibatch B; Learning rate n
Outputs: Aggregated server parameters 6,
1: procedure FEDAVG
2 ServerUpdate:

‘ Initialize parameters 6,

32
4: for round ¢t € {1,2,--- ,T} do
Model aggregation 5: C; < (random subset of clients)
6: for client c € C; do
1 7: ¢,1 + ClientUpdate(c, 6;)
Client selection . end for
e 9: 0t+1 — ZC %0§+1
! 10: end for
Model broadcasting 11: ClientUpdate(c, 6;):
{ 12: B « (split local data into batches of size B)
13: for local epoch e € {1,2,--- , E} do
T r T

Local model training 1 for batch b B do
15: 6 «— 6 —nV£L0o;Db)
16: end for
17: end for
18: return local parameters 6

19: end procedure

[McMahan et al., 2017]
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® Federated Learning
Search term

Worldwide ¥ Past 5years ¥
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All categories ¥ Web Search ¥
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Encryption

Data Security
Governance

Confidential
Computing

Sovereign Cloud
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Masking

7" ITRM Solutions

E-Discovery Software
Data Sanitization

Secure Instant Communications

Influence Mobile Threat Defense Privacy Management Tools
Engineering ;
Cloud Data Protection Gateways it
4 Data Classification As of July 2021
Innovation Peak of Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity

TIME

Plateau will be reached:

Jun 18, 20...

Jun 7,2020

(O less than 2 years ® 2to5years @ 5to10years A more than 10 years @ obsolete before plateau

[Google Trends, 2022] [Gartner Hype Cycle for Privacy, 2021]

it/ UNIVERSITY S
SINGAPORE




Performance Issues with Vanilla FL

a 11D Data b Non-IID Data
I.  Poor convergence on non-lID data .. wi
wt witl . Wi witt E
/"’/(7’. - w //”'./ t $) [h
i i i i i i o > ‘ r@witiA W' ‘/ ’dv ” wttt =
* Client drift occurs when the local distributions are highly SN :” o = e
different from the global distribution ol Wi @ gy
* Server updates move towards the average of client optima
.X'* +.X'* @ Local model Local optima ——» Client update
1 2 InStead Of the true g|0ba| Opt'mum x* @ Global model A Global optima » Server update

Fig. 2. Tllustration of client drift in FedAvg for two clients with two local
steps. (a) IID data setting. (b) Non-IID data setting.

Il. Lack of solution personalization

* Trains and makes inference a single globally-shared FL model

* Designed to fit the “average client” /

e The global model does not generalize well for data distributions

that are different from the global distribution D
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Towards Personalized Federated Learning (PFL)

Model aggregation
e Client selection
A 4
Model broadcasting
A 4

Local model training

Federated Learning Personalized Federated Learning

«Generalization «Privacy JCommunication JGeneraIization JPrivacy «Communication
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Proposed PFL Taxonomy

a Centralized Machine Learning [ Personalized Federated Learning: A Proposed Taxonomy

Generalization

2
" o
7 SN
j\ «/  Generalization e DR \x

. > Privacy D '
Data i >¢  Communication 1 = g
‘ ¢ l ¢
Q)

\ 3 i ! I =
D ¢ Data Heterogeneity o o O 5 o ‘ a

Privacy

Data Heterogeneity

v/
v
«/ Communication
v
v

Solution Personalization

&
Global Model Personalization Learning Personalized Models

Solution Personalization

Data Augmentation

Data-based
Global Model Personalization Client Selection
b Federated Learning ;
Data Heterogeneity -
Regularization
Model-based Meta-Learning
Server model Transfer Learning
Approache: .
% Generalization Parameter Decoupling
e ‘\ «/ Privacy Architecture-based
paramete L i ; et
% Communication Learning Personalized Models w
f Solution P lizati
D D D >{ Data Heterogeneity Multi-Task Learning
9¢ Solution Personalization o i
T 4 T 4 Similarity-based Model Interpolation

Clustering

Server model Trained server model m PFL algorithm |:| Local model OA Personalized model Local data

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang, “Towards personalized federated learning,” IEEE Transactions on

] NANYANG Neural Networks and Learning Systems, 2022.
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Strategy 1: Global Model Personalization

Goal of PFL: to improve the performance of the global FL model under data heterogeneity

“single global model setting”
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Global Model Personalization
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Data-based Approaches

a Data Augmentation
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b Client Selection

% Select clients
|
AI para:kA
Augmented
data
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Model parameters

2

1 e

9 [ .o

6Di6@
@)

e
Model-based Approaches
c Regularized Local Loss d Meta-Learning e Transfer Learning
Optimized for fast adaptation

A/Global model\l

g
:
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Data-based Approaches

Reduces the heterogeneity of data distributions

(i) Data Sharing

* [Zhao et al., 2018]
* Distributes a small amount of global proxy data (uniform distribution over classes) to the clients

(ii) Data Augmentation
* FAug [Jeong et al., 2018]
* Data samples of minority classes are uploaded to the server to train the GAN model in the server

* The GAN model is sent to clients to augment its local data towards yielding an 11D dataset

e Astraea [Duan et al., 2021]

* Uses Z-score based augmentation & down-sampling to reduce class imbalance

(iii) Client Selection

* FAVOR [Wang et al., 2020]
* Proposed a deep Q-learning formulation to mitigate the bias introduced by non-IID data

* Selects a subset of clients in each training round that maximizes the reward in terms of accuracy and penalizes the use of more

A A CoGICAL communication rounds
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Regularization

Limits the impact of local updates to achieve convergence stability & improve the generalization

of the global model

Model parameters

e 2
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(i) Between global & local models
* FedProx [Li et al., 2020]

EHQC he wH2 L2-norm

* FedCL [Yao & Sun, 2020]

§ : Y
H Q’LJ (907@,7 Wi ) Elastic Weight Consolidation

i,J Importance matrix estimated on proxy data in server

* Scaffold [Karimireddy et al., 2020]
U == vc

Estimated difference of update directions between global & local models

Variance reduction

(ii) Between historical local model snapshots
* MOON [Lietal., 2021]
exp(sim(0.,w)/T)
exp(sim(0.,w)/T) + exp(sim(0., (92_1)/T) Contrastive learning

* Reduce distance between global & local models to reduce client drift
* Increase distance between local model snapshots to speed up convergence

—plog
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Meta-Learning

Learns a global model initialization for fast adaptation on a new heterogeneous task (“client”)

Per-FedAvg [Fallah et al., 2020]

C
min F (w Z

* Proposed a variant of FedAvg that builds on the MAML [Finn et al., 2017] formulation weR?
* Goalisto learn a global model that performs well on a new task after it is updated with a

few steps of gradient descent .
— meta-learning

9 ---- learning/adaptation
VL
min F(w):= = E fe(w—aVf. (w)) vr,
v - F.(w) vl oy 03
07 \\.9;
e Gradient computation requires access to second-order information -> computationally expensive
2
VF.(w) =1 —aV*f.(w))Vf.(w—aV f.(w))
e Use of gradient approximations e.g. FO-MAML [Finn et al., 2017] , HF-MAML [Fallah et al., 2020]
NANYANG
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Transfer Learning

Reduces the domain discrepancy between the trained global FL model and the local model

FedHealth [Chen et al., 2020]

* Introduces an alignment layer to adapt the second-order statistics of the source & target domains

ol & B &5 B A
= o = o model
° (@] o o o} p
Alignmentt
0 P B EE R
_;g_.é_.g — X — D — R—POWD erver
- o - o model
- o o O o -~
3 Y J , |
Data Frozen Train

Figure 3: The transfer learning process of FedHealth
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Strategy 2: Learning Personalized Models

Goal of PFL: to collaboratively train individual personalized models for each client

=

- &
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Learning Personalized Models
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Architecture-based Approaches

a Parameter Decoupling b Knowledge Distillation

7 (7 T
Federated t
’ 1 model parameters I i .U
Personallzed ( Personalized e - knowledge - = ~. =
L Feature R tati ’ @ &
ayers eature Representations i : Public data
aa 1 H @ B E 8-
6 & A
Similarity-based Approaches
c Multi-Task Learning d Model Interpolation e Clustering

Cluster 1 Cluster k

/Model parameters

Client relationship learning

- Global FLmodel
{:} PFLalgorithm

|:| Local model

C)% Personalized model

Local data
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Parameter Decoupling

Compirises private and federated parameters

\

(i) Personalized layers g—»g—»g

[Arivazhagan et al., 2019] B il '
* Personalized layers are kept private at the clients for local training, base layers are used in FL

\

(ii) Personalized feature representations | g g g
| —» —> |

FURL [Bui et al., 2019] .

——— e —————

User embeddings as private parameters; character embeddings, LSTM and MLP layers as federated parameters.

LG-FedAvg [Liang et al., 2020]
* Combines local representation learning and global federated training

» Specialized encoders can be designed based on the source data modality (e.g. image, text)
* Fair and unbiased representations may be learnt

(iii) Learning the privatization strategy [Li et al., 2021]
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Knowledge Distillation

Allows a personalized architecture design for each client

FedMD [Li & Wang, 2019]

* Each client designs its own personalized model

e Learns through a consensus result using the average class scores on a public dataset.

* For every communication round, each client trains its model on the public dataset to approach
the updated consensus, and fine-tunes its model on its private dataset thereafter.

FedDF [Lin et al., 2021]

* The server constructs p prototype models to represent clients with identical model architectures (e.g. ResNet,
MobileNet).

e Step 1: Perform FedAvg within each prototype group to initialize student model

e Step 2: Perform ensemble distillation for cross-architecture learning

C
min F (w) :=Egzp, [KL [0 (% Zg (&;x)) 0 (g (wp;x))”

R4
Wp € o—1

NANYANG
TECHNOLOGICAL

$95=2) UNIVERSITY
7 SINGAPORE

16



Multi-Task Learning

Learns personalized models while leveraging task (“client”) relationships

MOCHA [Smith et al., 2017]

min ZD (wizss i) + pntr(WOWT) + 15| W2

c=1 =1

Relationship matrix of learning tasks

* Extends MTL to FL
* Learns a personalized model for each client, related clients learn similar models

* Uses a primal-dual formulation, only for convex models

FedAMP [Huang et al., 2021]
Cloud Server

* Maintains a personalized cloud model u, for each client in the server
* Enforces stronger pairwise collaboration for clients with similar data distributions m m ------ ﬂ ------ J
UC — Sc,lwl —I_ cee + gc’mwm fi)/fi’2 Tfi’i\i,m
k— k— o
6= ol (Wi = wiH2) (i £ 5) G o 5D
Similarity function ﬁ a """ ﬁ """ B

* U, is transferred to each client to perform local training T — e e
1 2 i m

k

FT] NANYANG w,. = argminweRdfc (?U) + ﬂ HUJ . UcH2 17

)
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Model Interpolation

Learns personalized models using a mixture of global and local models

[Hanzely & Richtarik, 2020]

e Each client learns a personalized model 6,

* The personalized model is encouraged not to depart too far from the mean
« A1 -0, local model learning 7
parameters

* A — o0, global model learning / \
Model

, min_ F(0) = {5@ + Wi} zgg ng
c O O

1 & i
G2 te0)  a0)= 55 3100

APFL [Deng et al., 2020]

Introduces a mixing parameter that is adaptively learnt during the FL training process to control the balance between
the global and local models

0 = argmingepa fe (dd + (1 — ac) w)
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Clustering

Supports group level personalization

* For applications where there are inherent partitions among clients or data distributions that are significantly different
* A multi-model approach where an FL model is trained for each homogeneous client cluster

* FL+HC [Briggs et al., 2020]
* Applies agglomerative hierarchical clustering based on global and local model parameter differences
* FLtraining is then performed independently for each client cluster to produce c federated models

* CBFL[Huang et al., 2019]
* Applies K-means clustering to cluster clients based on the encoded features of their private data
A FLmodelis then trained for each cluster

* FeSEM [Xie et al., 2020]

* Proposed a multi-center formulation that learns multiple global models

ﬁ’“ N oeica” Uses expectation maximization to solve a joint optimization problem with distance-based multi-center loss

055 UNIVERSITY
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PFL Research Directions

Client Data PFL Architecture
Heterogeneity Analytics Search
Continual Learning
o -
Procedure Design

Open

Realistic Datasets Collaboration

Iﬁ { Towards PFL } SAA

Realistic Trustworthy

Benchmarking Al
Realistic Non-IID Fairness
Settings
Holistic Evaluation Robustness
Metrics
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Continual Learning

(aka Incremental learning, Lifelong learning)

learn new knowledge from a new experience (task) without forgetting knowledge learnt from old
experiences (tasks)

* 3 key scenarios studied in CL research

Learning on a sequence of tasks

Task 1 Task 2 Task 3

01/

first second first second first second first second first  second
class class class class class class class class class class

Figure 1: Schematic of split MNIST task protocol.

Table 2: Split MNIST according to each scenario.

Multiple distinct tasks — Task-IL With task given, is it the 1% or 2™ class?
(e.g.,0or1)

With task unknown, is it a 1! or 2™ class?
(e.g.,in [0,2,4,6,8] orin [1,3,5,7,9])

cl 5 With task unknown, which digit is it?
New classes ass- (i.e., choice from O to 9)

Changing data distributions  Domain-IL
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Continual Learning Approaches

1) Replay-based methods
* Rehearsal: store samples in raw format, reuse as model inputs for training
* iCARL [Rebuffi et al., 2017]: nearest-mean-of-exemplars

* REMIND [Hayes et al., 2020]: quantized convolutional features

* Requires storage, privacy risks, prone to overfitting
* Pseudo rehearsal: generate pseudo-samples/features in-memory to avoid exemplar storage

* Challenging on complex datasets, relies on the quality of the generated synthetic samples.

2) Regularization-based methods
* Introduce regularization terms in the loss function to constrain weights updates to prevent forgetting

* Knowledge distillation: prevent the deviation of model outputs from a teacher model that has been trained on old classes
« LwF[Lietal., 2016]
Input: Target:

model (a)’s

task ¢ response for

w

n.e i Gk old tasks
image >

new task
ground truth

» Cross-distilled loss [castro et al., 2018] , pooled outputs distillation loss [Douillard et al., 2020], attention distillation loss [Dhar et

al., 2019]
NANYANG
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Continual Learning Approaches

3) Architecture-based methods
* Dedicates different model parameters to each task to prevent forgetting

* HAT [Serra et al., 2018] learns a hard attention mask for each task to preserve the knowledge of previous tasks by freezing a
portion of the weights

* PNN [Rusu et al., 2016] instantiates new networks incrementally for each new task and adds lateral connections to previous
knowledge

* Increase in network complexity and growth in memory requirement

Progressive Neural Network with 3 tasks

outputy outputs outputs

input

[Rusu et al., 2016]
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Stability -Plasticity Dilemma in CL

Catastrophic forgetting: significant performance degradation on old tasks when new tasks are learnt
* Updates override knowledge learnt from previous tasks
* Overridden knowledge cannot be recovered without available data from previous tasks

Maintain old knowledge Learn new knowledge

Stability Plasticity
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Bridging PFL + CL

* Data stationarity is a common assumption in PFL

* However, changes in the underlying data distributions over time are expected in dynamic real-world systems

\ YA L

train PFL models on changing data distributions over time *J &
NN (o))
Xk N X 0110101

Alibaba City Brain: Traffic forecasting & urban planning g 2 /’ y N J“f;'g-" \ //
3B B 4 A VO A —=
‘ 0110101 WA L "“r, /] :
- N A N e r‘\‘ ; f
T N - <=,

o110101

HRTNE

privacy-preserving collaborative learning
personalized model for local adaptation
_ learning without forgetting on big data streams
NANYANG [Alibaba DAMO, 2022]
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Personalized Continual Federated Learning (PCFL)

Personalized Continual Federated Learning System

Data

O Privacy
A Data Size
@/ Data Heterogeneity

Algorithm : - System
© Adaptability &
) Memory
@A Generalization
X <> Communication © RQ1
_ Personalization | A RQ2
' < RQ3

RQ1 : How to incrementally adapt an existing trained PCFL
model to newly collected local data?

RQ2 : How to train PCFL models in few-shot settings?

RQ3 : How to achieve memory and communication efficiency in
PCFL?

Figure 1.1: Challenges addressed by each open research question in Personalized Contin-

ual Federated Learning systems.
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Research Directions

RQ1: How to incrementally adapt an existing trained PCFL model to newly collected local data?
* In deployed FL systems, there are often changes in the underlying data distributions

* Example: adapting the FL model to a new target market

* New target classes, different data distributions

Expanding target classes Distribution shifts

-,

sudden 'O O b O o000 OOAAA AA AA AA
gradual () Q0O O‘QO L ] OAA O A'AA AAAA
incremental O 0 e O Oi‘ 7 ‘AAAMAA A A

bips © OO O OO OO OO0 OKHOOO0 O
Model 0 Model 1 7
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Research Directions

RQ2: How to train PCFL models in few-shot settings?

» Data scarcity (lack of quality training data) is the key motivation for clients who join FL

e Challenges
* Avoid forgetting on old classes
* Prevent overfitting to few-shot data of new classes
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Research Directions

RQ3: How to achieve memory and communication efficiency in PCFL?

* FL client devices have significant variability in hardware capabilities in terms of memory, power, network connectivity
A memory budget is required in many CL approaches, which is not applicable to memory constrained client devices

» Potential privacy risks from long-term data storage

* Need for communication-efficient mechanisms to address bandwidth challenges
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