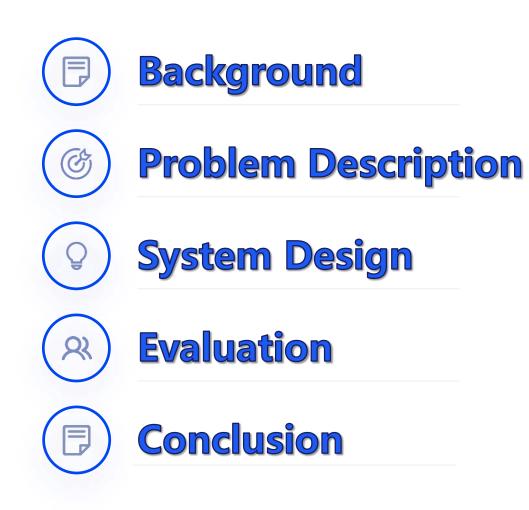
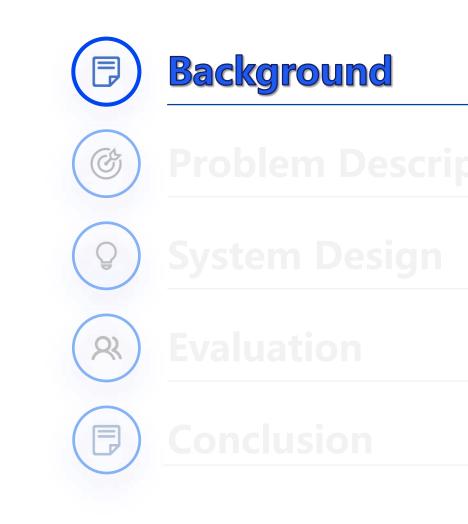


Efficient Federated-Learning Model Debugging

Anran Li Research Fellow Nanyang Technological University

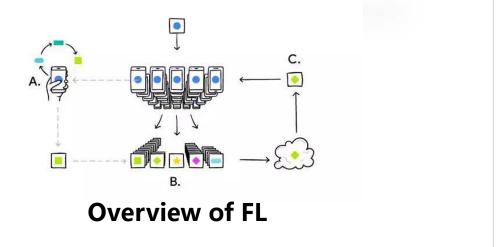
2022.12.12





Federated Learning

- Federated learning (FL)
 - Local data, multiple clients cooperation
 - Privacy preserving, bandwidth saving



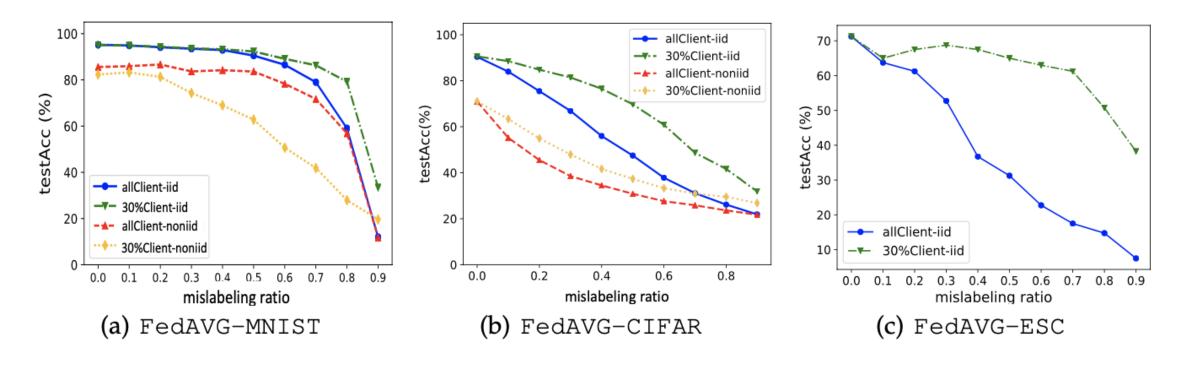
Data sources in FL

Crowdsourcing

Low-quality data leads to serious consequences

Local erroneous data results low-performance global FL models

Test Accuracy v.s Mislabeling Ratio



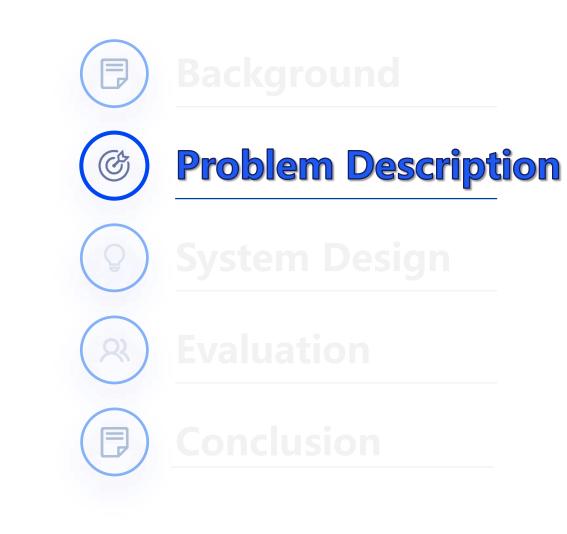
Towards erroneous data in FL clients.

An Efficient Data-based Model Debugging or Interpretation for Federated Learning.

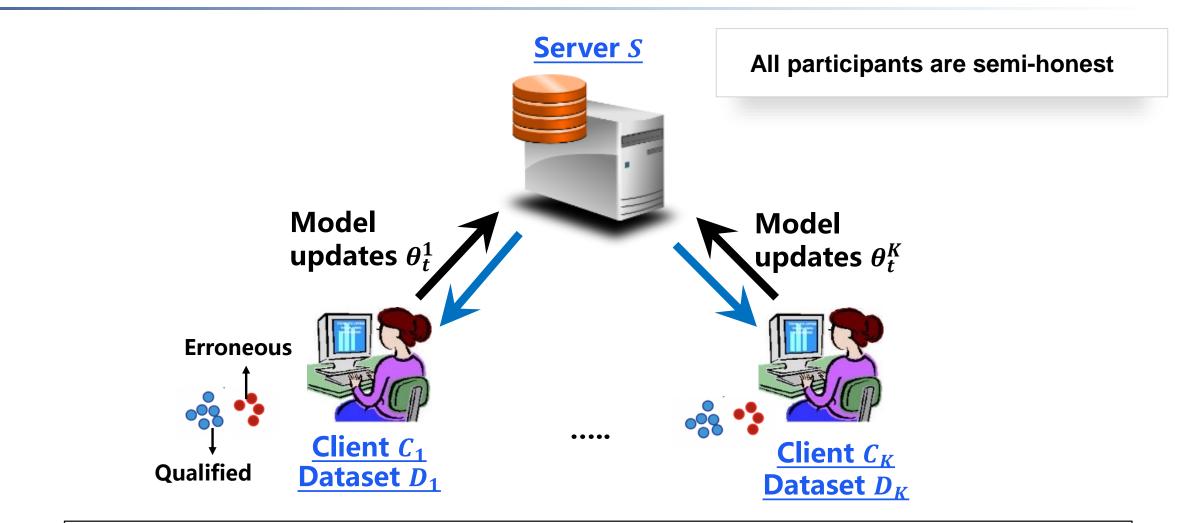
Model debugging: giving explanations of model prediction results (ICML 2017).

Model Debugging	Sample-level	Client-level	
Centralized Learning	Through perturbing a subset of the data samples [CVPR16, S&P16]. Analyzing the influence of data samples on the model' s predictions [ICML19, NIPS19]		
Federated Learning		Client contribution to FL models [AAAI21, BigData19]	
Direct access to dat	a High computation/ communication cost	Privacy concerns	
Lack of eff	icient sample-based mo	odel debugging or	

interpretation methods for FL models.



Problem Description



Efficient Federated-learning Model Debugging from the perspective of data

Influence Function for FL

- Influence functions were proposed to avoid retraining the model by providing a first-order approximation to the actual effect
- The parameter change after removing sample $z_{k,i}$ from client C_k .

$$I_f(w_k) \approx \nabla_{\theta}^{\top} f(\hat{\theta}(\mathbf{1})) \left(\frac{1}{K} \sum_{k=1}^K H_k + \lambda I\right)^{-1} g_{\hat{\theta},f}(w_k),$$

$$g_{\hat{\theta},f}(w_k) = \sum_{k=1}^{K} \sum_{i \in \mathcal{P}_k} w_{k,i} \nabla_{\theta} L(z_{k,i}; \hat{\theta}) \quad H_k = \frac{1}{n_k} \sum_{i \in \mathcal{P}_k} \nabla_{\theta}^2 L(z_{k,i}; \hat{\theta})$$

 Insight 1: The influence function for FL has an additive property when measuring the change in test predictions

> If
$$w_k = w_{k,1} + w_{k,2}$$

> Then
$$I_f(w_k) = I_f(w_{k,1}) + I_f(w_{k,2})$$

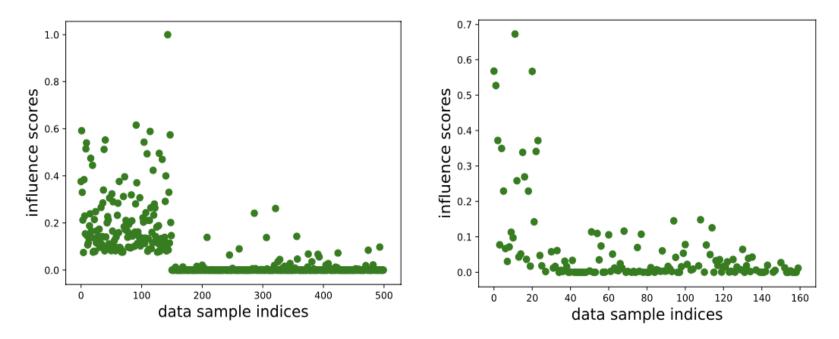
 Insight 1: The influence function for FL has an additive property when measuring the change in test predictions

> If $w_k = w_{k,1} + w_{k,2}$

Enlighten hierarchical influence analysis: identifies influential clients first to save large cost for sample-level influence analysis.

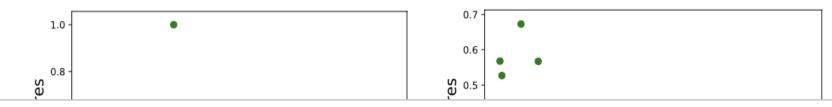
Opportunities and Insights

 Insight 2: When there are more qualified training samples than erroneous training samples, erroneous samples have obviously larger absolute influence values than qualified ones

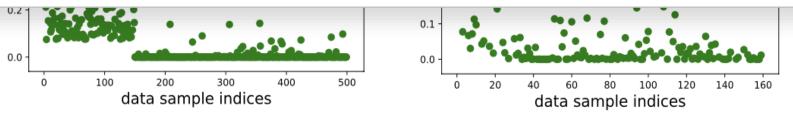


Influence values for erroneous and qualified samples

 Insight 2: When there are more qualified training samples than erroneous training samples, erroneous samples have obviously larger absolute influence values than qualified ones

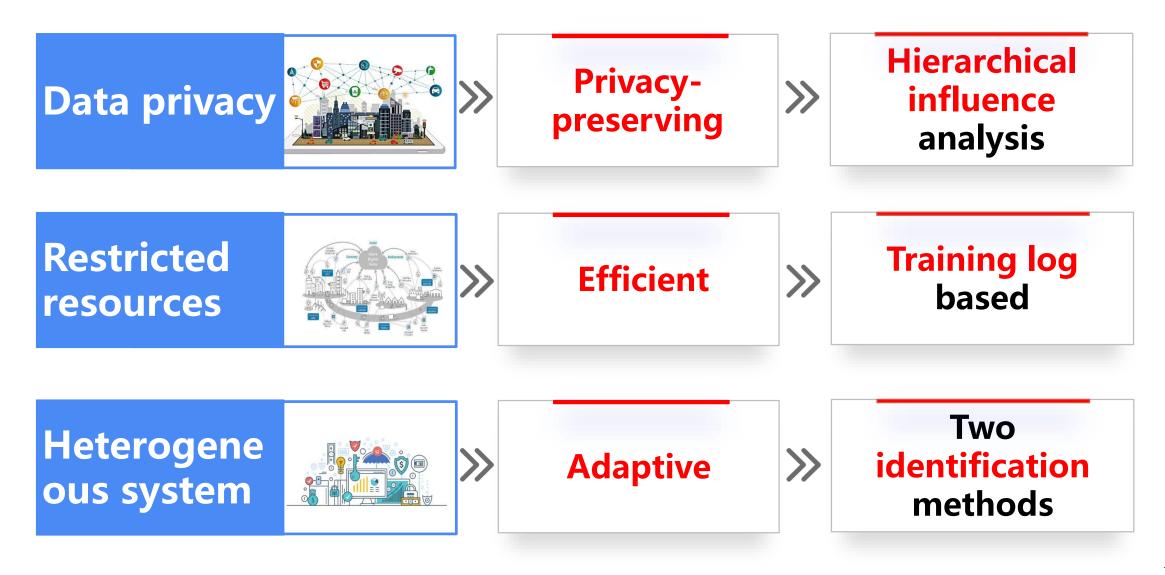


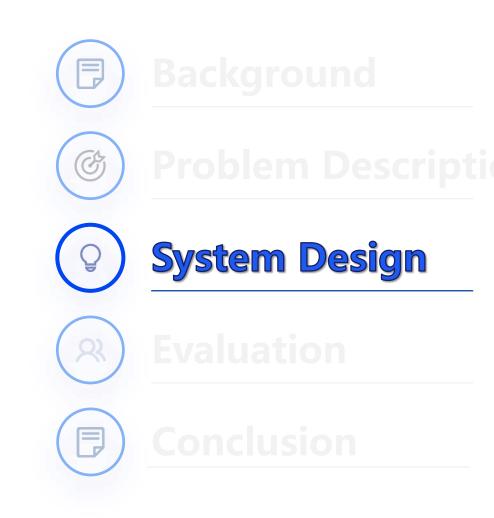
An opportunity to distinguish erroneous samples and clients from qualified ones.

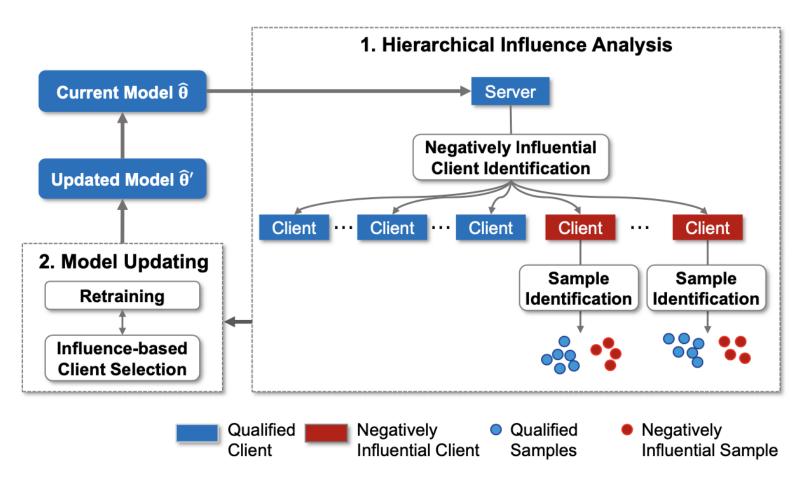


Influence values for erroneous and qualified samples

Challenging Issues and Solutions





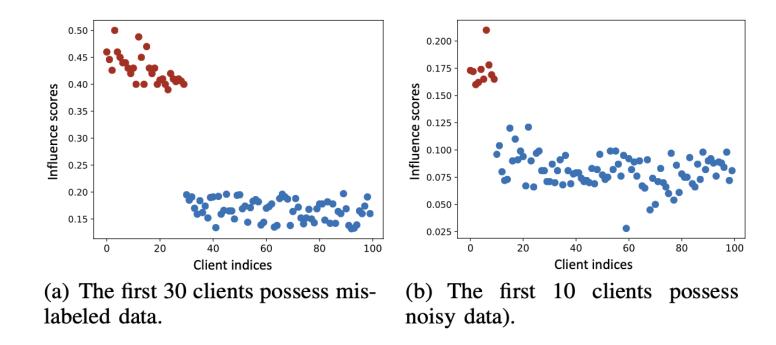


System Overview

Basic method of client identification

 Influential clients have obviously larger absolute influence values than qualified ones

Sum up influence values of all its samples



Large Computation cost

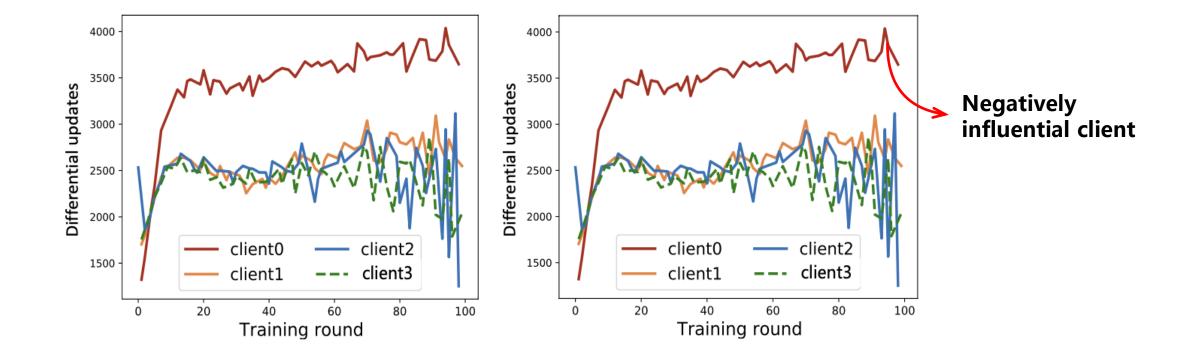
Training log based client identification

• A client is negatively influential if his distance is significantly greater than the median distances of all clients

$$\frac{D_k}{median\{D_l|l \in [K]\}} > \delta_T \qquad D_k = \frac{1}{N(k)} \sum_{t=\frac{T}{2}}^T s_t^k ||\theta_t^k - \theta_t||$$

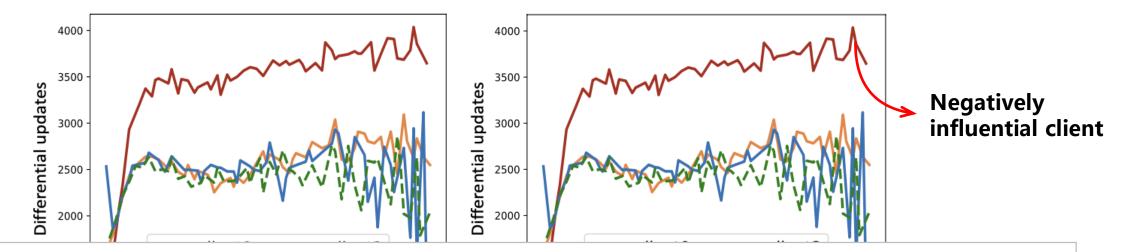
Training log based client identification

• A client is negatively influential if his distance is significantly greater than the median distances of all clients



Training log based client identification

• A client is negatively influential if his distance is significantly greater than the median distances of all clients



Dramatically saves both computation and communication cost by orders of magnitude

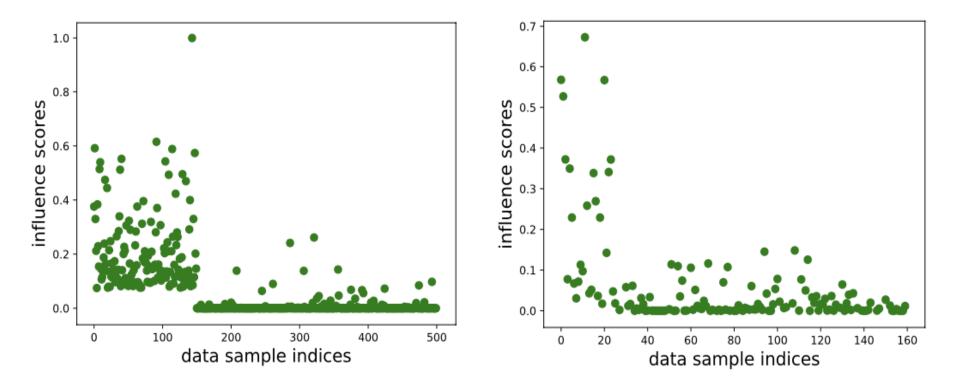
Basic method sample identification

• A sample is negatively influential if its influence value is significantly greater than the median influence values

$$\frac{I_f(z_{k,i})}{median\{I_f(z_{k,j})|z_{k,j} \in \bigcup_{C_k \in C_N} D_k} > \delta_S$$

Basic method sample identification

• A sample is negatively influential if its influence value is significantly greater than the median influence values

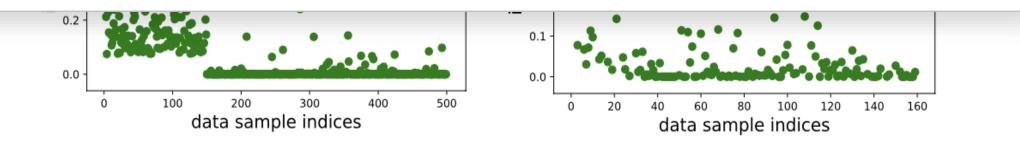


Influence values for erroneous and qualified samples

Basic method sample identification

• A sample is negatively influential if its influence value is significantly greater than the median influence values

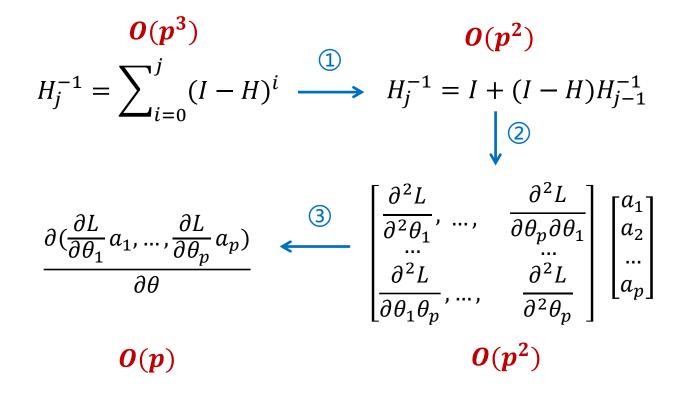
Directly calculate influence values causes unacceptable cost



Influence values for erroneous and qualified samples

Computation-efficient sample identification

• Use Hessian-vector products (HVP) to approximate $\left(\frac{1}{\kappa}\sum_{k=1}^{K}H_{k} + \lambda I\right)^{-1} \nabla_{\theta}L(z_{test}; \hat{\theta})$



Computation-efficient sample identification

• Use batch to decrease communication cost

for each round j = 1, 2, ..., r do The server uniformly selects a client $C_i, i \in [K]$ and sends $x_{j-1}, \hat{\theta}$ to client C_i Client C_i randomly selects $\lceil \xi n_i \rceil$ samples from \mathcal{D}_i ; computes $x_j = v + \sum_{s=1}^{\lceil \xi n_i \rceil} (I - \nabla_{\theta}^2 L(z_{i,s}, \hat{\theta})) x_{j-1} / \lceil \xi n_i \rceil$; sends x_j to the server

Model Debugging	Computation cost	Communication cost
Strawman method	$O(np^2 + p^3)$	$O(Kp^2)$
Computation- efficient method	0 (np)	0 (rp)

Complexity greatly reduced!

Communication-saving sample identification

• View the calculation of $H^{-1}v$ as the optimization problem $min_x ||Hx - v||^2$

$$x_j = x_{j-1} + \frac{v_l - h_l x_{j-1}}{||h_l||^2} h_l$$

> Uniformly sample one client at each step, use batch to estimate h_l

for each round $j = 1, 2, ..., r_1$ do The server randomly selects l from the set $\{1, 2, ..., p\}$; uniformly selects a client $C_i, i \in [K]$; sends l to client C_i ; Client C_i calculates h_l using all his/her samples; sends h_l to the server The server computes x_{j+1} using Eq. (10)

Model Debugging	Computation cost	Communication cost
Strawman method	$O(np^2 + p^3)$	$O(Kp^2)$
Communication- saving method	O (np)	O (Kp)

Complexity greatly reduced!

Influence-based client selection and model updating

• Dynamically selects clients to participate according to their influences

$$P_{t+1}^{k} = \frac{n_k ||\theta_t^k - \theta_t||}{\sum_{C_k \in S_t} n_k ||\theta_t^k - \theta_t||} \times \sum_{C_k \in S_t} P_t^k$$

Assign clients with larger influence on the current global model higher probabilities

No local training data transmitted during training, debugging process and updating process

The transmitted second order information cannot be used to infer the local training data

F

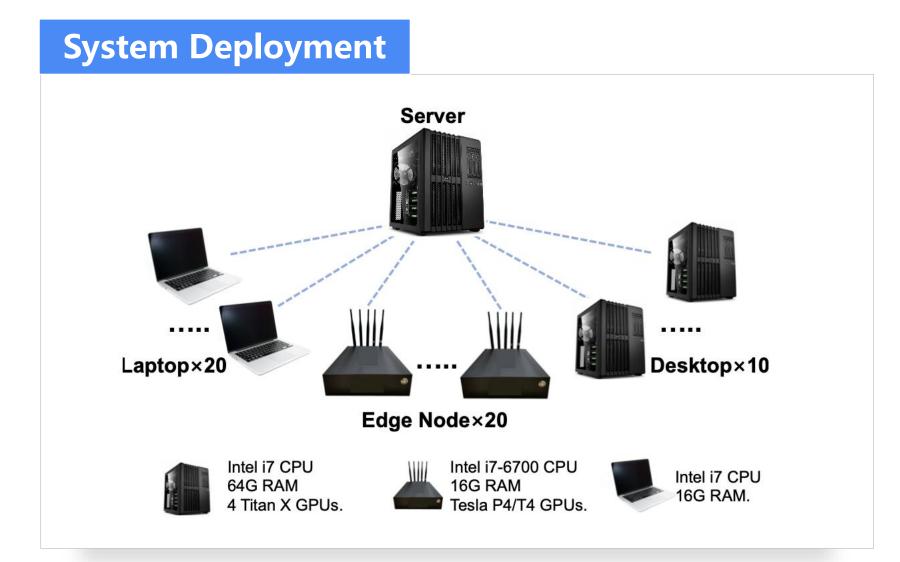
Background

Problem Description

System Design

Conclusion

Experiment Configuration



Experiment Configuration

Datasets

Modality	Notation	Size	Description
	\mathcal{D}_M	60,000	original training data of MNIST
Ī	\mathcal{D}_M^T	10,000	original test data of MNIST
Γ	$\mathcal{D}_M^{\widehat{m}}$	60,000	\mathcal{D}_M with 9%-40% mislabeled samples
$\mathcal{D}_C^{\widetilde{n}}$		50,000	\mathcal{D}_M with 9%-40% noisy samples
Γ	\mathcal{D}_C		original training data of CIFAR10
Imaga	\mathcal{D}_C^T	10,000	original test data of CIFAR10
Image	$\mathcal{D}_C^{\tilde{m}}$	50,000	\mathcal{D}_C with 9%-40% mislabeled samples
-	$\mathcal{D}_C^{\tilde{n}}$	50,000	\mathcal{D}_C with 9%-40% noisy samples
	$\mathcal{D}_R^{\widetilde{m}}$	100,000	REAL dataset with 9% mislabeled samples
	$rac{\mathcal{D}_R^m}{\mathcal{D}_R^T}$	10,000	clean test dataset of REAL
	\mathcal{D}_{O}^{m}	10,000	MOTOR dataset with 9% noisy samples
	\mathcal{D}_{O}^{T}	1,000	clean test dataset of MOTOR
	\mathcal{D}_E	320	original training data of ESC10
Audio	\mathcal{D}_E^T	80	original test data of ESC10
ľ	$\mathcal{D}_E^{\widetilde{m}}$	320	\mathcal{D}_E with 9%-40% mislabeled samples

Experiment Configuration

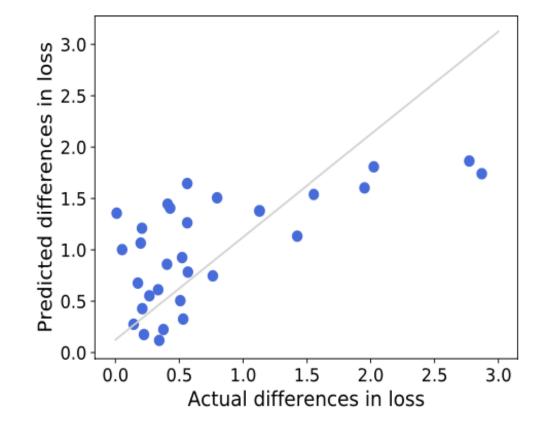
FL Models

Model	# of para	Task
FedAVG-MNIST [25]	1,663,370	digit number recognition
FedAVG-CIFAR [22]	11, 173, 962	image recognition
FedAVG-REAL [22]	11,419,722	image recognition
FedAVG-MOTOR [22]	11,219,010	image recognition
FedAVG-ESC [26]	22,017,322	environment classification

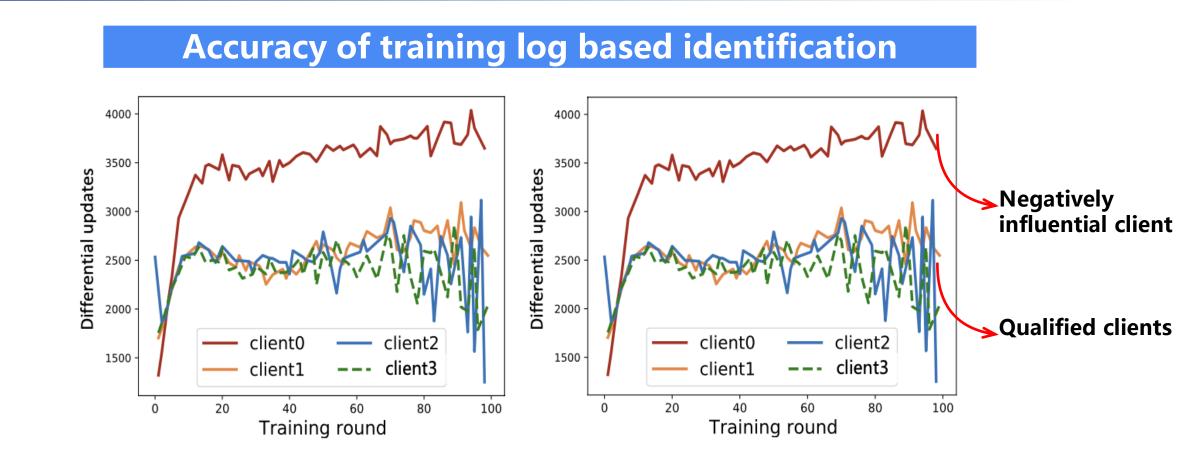
Settings of FL Models

Model	Dataset	r_m or r_n	# Clients	# NI-clients
FedAVG-MNIST	\mathcal{D}_M^m	$r_m=9\%$	50	15
FedAVG-MNIST	\mathcal{D}_M^n	$r_n = 10\%$	50	15
FedAVG-CIFAR	\mathcal{D}_C^m	$r_m=9\%$	15/50	3/15
FedAVG-CIFAR	\mathcal{D}^n_C	$r_n = 10\%$	15	3
FedAVG-REAL	$\mathcal{D}_R^{ ilde{m}}$	$r_m=9\%$	10	3
FedAVG-MOTOR	$\mathcal{D}_{O}^{\overline{m}}$	$r_m=9\%$	10	3
FedAVG-ESC	\mathcal{D}^{m}_{E}	$r_m = 9\%$	4	1

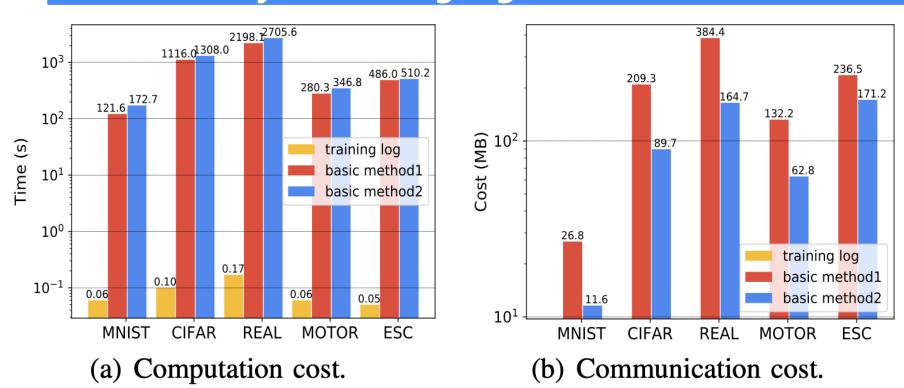
Influence function for FL vs. Leave-some-out retraining



The predicted influences and actual changes in loss are correlated, with PCC=0.6

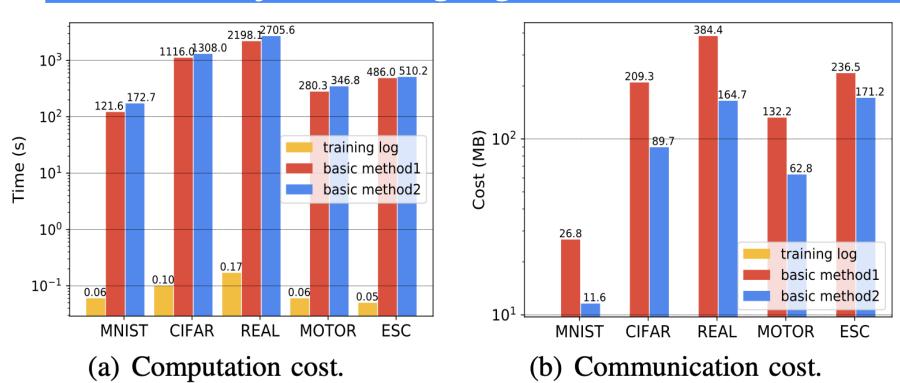


Accuracy, precision and recall are all 100% with threshold $\delta_T = 1.50$



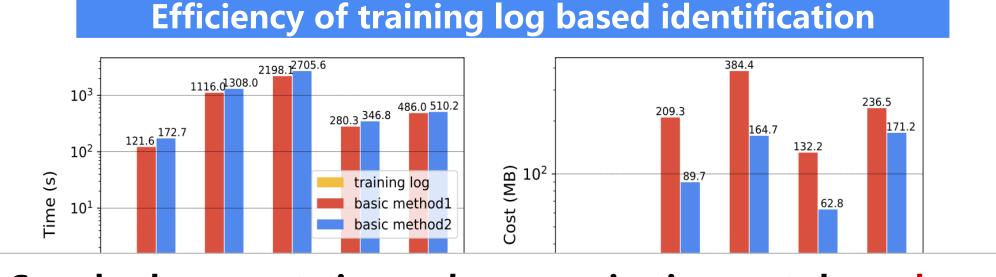
Efficiency of training log based identification

The runtime of the training log method is 0.1s, while 1116.0s and 1308.0s for two basic methods



Efficiency of training log based identification

No communication cost of training log method, while 209.3MB and 89.7MB for two basic methods



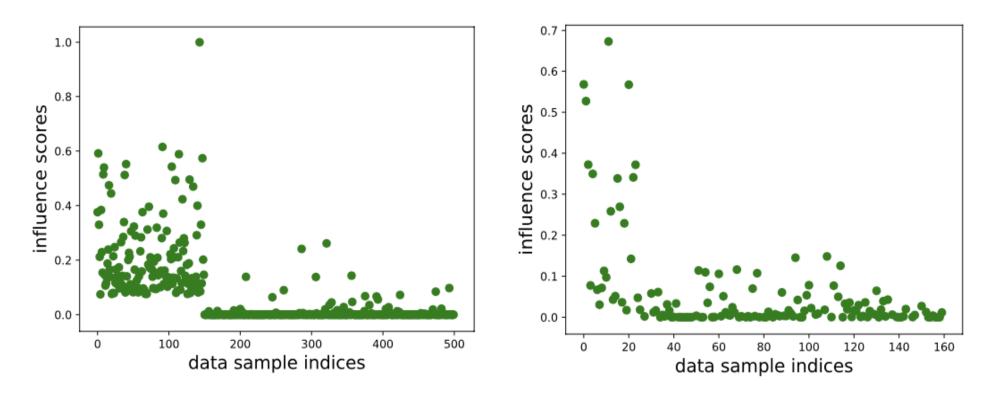
Save both computation and communication costs by orders of magnitude

MNIST CIFAR REAL MOTOR ESC MNIST CIFAR REAL MOTOR ESC

(a) Computation cost. (b) Communication cost.

No communication cost of training log method, while 209.3MB and 89.7MB for two basic methods

Accuracy



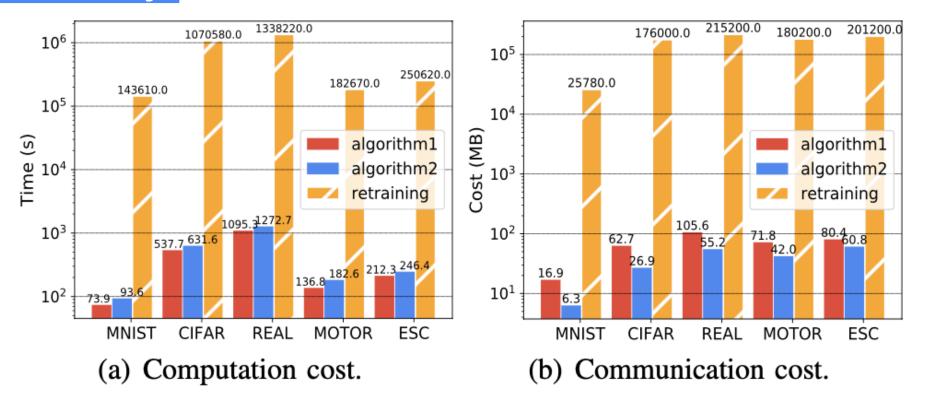
Influence values of data samples calculated using Algorithm 1

Accuracy

Dataset (# clients)	Algorithm	Accuracy	Precision	Recall
${\cal D}_M^m(50)$	Algorithm 1	91.0%	90.5%	93.2%
	Algorithm 2	92.5%	94.0%	90.8%
${\mathcal D}^n_M(50)$	Algorithm 1	94.2%	92.0%	91.0%
	Algorithm 2	92.1%	90.3%	92.3%
$\mathcal{D}_C^m(15)$	Algorithm 1	90.5%	75.3%	90.4%
	Algorithm 2	90.1%	77.0%	91.2%
$\mathcal{D}_C^m(50)$	Algorithm 1	82.1%	70.1%	82.0%
	Algorithm 2	83.0%	71.0%	81.4%
$\mathcal{D}^n_C(15)$	Algorithm 1	89.2%	78.5%	92.3%
	Algorithm 2	88.6%	76.4%	90.7%
$\mathcal{D}_R^m(10)$	Algorithm 1	84.0%	70.3%	80.0%
	Algorithm 2	85.1%	71.6%	81.2%
$\mathcal{D}^m_O(10)$	Algorithm 1	80.1%	62.0%	80.0%
	Algorithm 2	82.5%	64.1%	81.8%
${\mathcal D}^m_E(4)$	Algorithm 1	81.3%	72.3%	93.0%
	Algorithm 2	72.0%	73.1%	92.6%

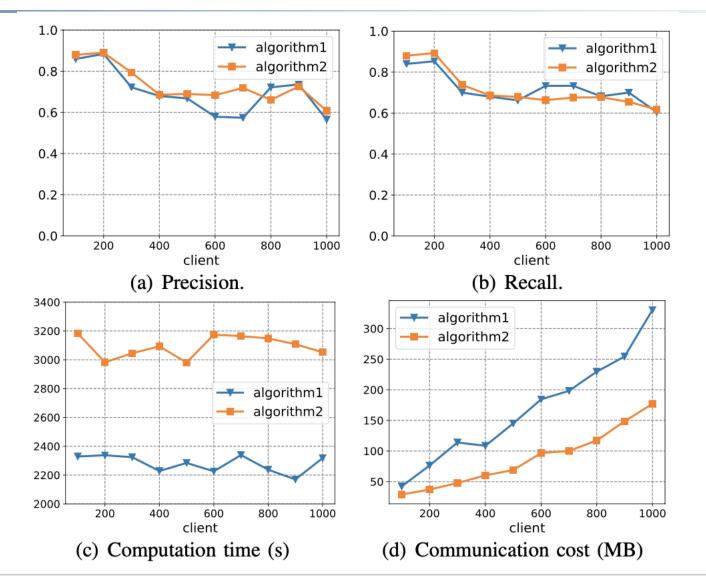
Achieve fairly high accuracy in all settings

Efficiency



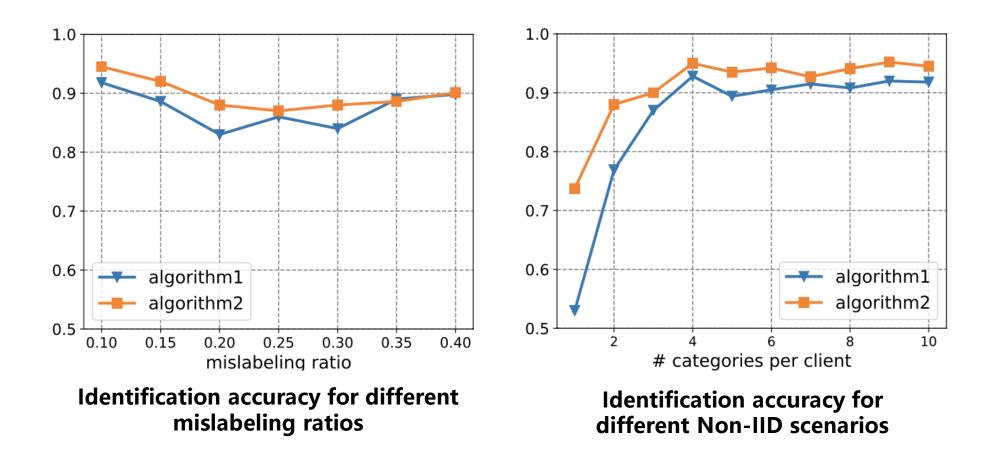
The costs are orders of magnitude lower, e.g., less than 0.051% computation cost, 0.060% communication cost

Large-scale simulations

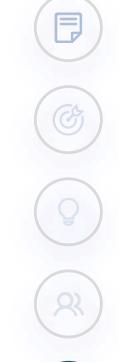


Scalable and robust in large environments

Large-scale simulations



Scalable and robust in large environments



Background

Problem Description

System Design

Evaluation

Conclusion

Present the framework FLDebugger to accomplish both debugging and interpretability of FL models from the perspective of training data.

Design a hierarchical negatively influential clients and samples identification method with around **90% accuracy**.

Design influence-based clients selection retraining method to facilitate the model training in terms of higher accuracy and faster convergence.

Thanks!

Email: anran.li@ntu.edu.sg