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Background




Federated Learning

Federated learning (FL) =~
> Local data, multiple clients A.\@
cooperation
> Privacy preserving, bandwidth
saving

Overview of FL

Data sources in FL

Web Crawlers

Crowdsourcing Web Crawling
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Low-quality data leads to serious consequences



Low-quality Data in FL
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Local erroneous data results low-performance global FL models
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Our Goal

Towards erroneous data in FL clients.

An Efficient Data-based Model Debugging or
Interpretation for Federated Learning.

Model debugging: giving explanations of model prediction results (ICML 2017).
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Existing Work

Model Debugging Sample-level Client-level
Centralized Through perturbing a subset of --
Learning the data samples [CVPR16,

S&P16]. Analyzing the influence
of data samples on the model’ s
predictions [ICML19, NIPS19]

Federated Learning -- Client contribution to FL
models [AAAI21, BigData19]

High computation/ } Privacy concerns

communication cost

Direct access to data [

Lack of efficient sample-based model debugging or
interpretation methods for FL models.
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Problem Description
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Problem Description

Server S

=

. [

All participants are semi-honest

Model
updates 6}

Erroneous “Ej;] _\ _‘
e o N QU fiL
3 Clientc, ™ Client Cy
Qualified  Dataset D, Dataset D,

Efficient Federated-learning Model Debugging from
the perspective of data
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Influence Function for FL

* Influence functions were proposed to avoid retraining the model
by providing a first-order approximation to the actual effect
» The parameter change after removing sample z, ; from client C,.

Ip(ux) % VF FO) (5 S Hi+ M) g5 (),
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Opportunities and Insights

Insight 1: The influence function for FL has an additive property
when measuring the change in test predictions

> If W = Wg, 1T+ Wg2

> Then If(wg) = Ir(wg1) + I(wk2)

12
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Opportunities and Insights

Insight 1: The influence function for FL has an additive property
when measuring the change in test predictions

> If W = Wg, 1T+ Wg2

Enlighten hierarchical influence analysis: identifies influential
clients first to save large cost for sample-level influence analysis.
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Opportunities and Insights
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* Insight 2: When there are more qualified training samples than
erroneous training samples, erroneous samples have obviously
osolute influence values than qualified ones
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Opportunities and Insights

* Insight 2: When there are more qualified training samples than
erroneous training samples, erroneous samples have obviously
larger absolute influence values than qualified ones
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An opportunity to distinguish erroneous samples and clients
from qualified ones.
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Influence values for erroneous and qualified samples
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Challenging Issues and Solutions

Restricted
resources

LRS! » Privacy-

preserving

CVagm ... -
pl e 2 A M M
o9 | v __w
9~ N Efficient
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» Adaptive
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Hierarchical
» influence
analysis

Training log
» based

Two
» identification
methods
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Outline

System Design
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System Design

Current Model

Updated Model 6’

m

Negatively Influential
Client Identification
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Sample Sample
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! - .l 0o l..
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Client Influential Client ~ Samples

System Overview

Influential Sample
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Basic method of client identification

« Influential clients have obviously larger absolute influence values

than qualified ones
» Sum up influence values of all its samples
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Influence scores
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(b) The first 10 clients possess
noisy data).

Large Computation cost
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A client is negatively influential if his distance is significantly
greater than the median distances of all clients
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Training log based client identification

A client is negatively influential if his distance is significantly
greater than the median distances of all clients
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g g i
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Training round Training round
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Training log based client identification

A client is negatively influential if his distance is significantly
greater than the median distances of all clients
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Dramatically saves both computation and communication
cost by orders of magnitude
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Basic method sample identification
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« A sample is negatively influential if its influence value is significantly
greater than the median influence values
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Basic method sample identification

« A sample is negatively influential if its influence value is significantly
greater than the median influence values
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Basic method sample identification

« A sample is negatively influential if its influence value is significantly
greater than the median influence values
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Directly calculate influence values causes unacceptable cost
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Influence values for erroneous and qualified samples
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Computation-efficient sample identification

-1 .
« Use Hesslan-vector products (HVP) to approximate (% K Hp + /11) VoL(Ztost; 0)

O(PS) o 0(p?)
H ' = 2;0(1 —-H)! —— H'=1+U-HHZ}
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Computation-efficient sample identification
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 Use batch to decrease communication cost

for each round y = 1,2,...r do

The server uniformly selects a client C;,4 € [K| and sends
z;_1,0 to client C;

Client C; randomly selects [£n;| samples from D;;
computes

z; =v+ ST — V2L(26,0))x;_1/[€ns]; sends
x; to the server

27
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Complexity Analysis

Model Debugging Computation cost Communication cost

Strawman method 0 (np? + p3) 0(Kp?)

Computation- O0(np) O(rp)
efficient method

Complexity greatly reduced!

28
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+ View the calculation of H~1v as the optimization problem min,||Hx — v||?

U — hlxj_l n
[
1R[]

Xj = x]’_l ~+
» Uniformly sample one client at each step, use batch to estimate h;

for each round 3 =1,2,...71 do

The server randomly selects / from the set {1,2,--- ,p};
uniformly selects a client C;, 4 € [K]; sends [ to client C;;

Client C; calculates h; using all his/her samples; sends h;
to the server

The server computes ;1 using Eq. (10)

29
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Complexity Analysis

Model Debugging Computation cost Communication cost

Strawman method 0 (np? + p3) 0(Kp?)

Communication- O0(np) O(Kp)
saving method

Complexity greatly reduced!

30
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« Dynamically selects clients to participate according to their influences

k
phy -l O
t+1 — Hk—g t
chestnkn t el CLESt

Assign clients with larger influence on the current global model
higher probabilities
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No local training data transmitted during training, debugging
process and updating process

The transmitted second order information cannot be used to infer
the local training data
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Experiment Configuration

System Deployment

Laptopx20
Edge Nodex20
Intel i7 CPU Intel i7-6700 CPU
64G RAM “W“ 16G RAM
4 Titan X GPUs. Tesla P4/T4 GPUs.

2

Intel i7 CPU
16G RAM.
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Experiment Configuration

Modality| Notation Size | Description

Dy 60,000 | original training data of MNIST
D1, 10,000 | original test data of MNIST
DY 60,000 | Dps with 9%-40% mislabeled samples
D 50,000 | Djps with 9%-40% noisy samples
Dc 50,000 | original training data of CIFAR10
Image DZ, 10,000 | original test data of CIFAR10
Dx 50,000 | D¢ with 9%-40% mislabeled samples
Dy, 50,000 | D¢e with 9%-40% noisy samples
Dy 100,000 REAL dataset with 9% mislabeled samples
D7, 10,000 | clean test dataset of REAL
Dy 10,000 | MOTOR dataset with 9% noisy samples
Dy, 1,000 | clean test dataset of MOTOR
Dg 320 original training data of ESC10
Audio Dy, 80 original test data of ESC10
Dy 320 Dg with 9%-40% mislabeled samples

35



Experiment Configuration

FL Models
Model # of para | Task
FedAVG-MNIST [25] | 1,663,370 | digit number recognition
FedAVG-CIFAR [22] | 11,173,962| image recognition
FedAVG-REAL [22] 11,419,722| image recognition
FedAVG-MOTOR [22] | 11,219,010| image recognition
FedAVG-ESC [26] 22,017,322| environment classification

Settings of FL Models

Model Dataset| 7,, or 7, # Clients | # NI-clients
FedAVG-MNIST | DY} rm = 9% 50 15
FedAVG-MNIST | D}, rn = 10% 50 15
FedAVG-CIFAR | DZ rm = 9% 15/50 3/15
FedAVG-CIFAR | DZ rn = 10% 15 3
FedAVG-REAL DY rm = 9% 10 3
FedAVG-MOTOR | DgZ rm = 9% 10 3

FedAVG-ESC D7 rm = 9% 4 1

& | TECHNOLOGICAL
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Influence function for FL vs. Leave-some-out retraining
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Actual differences in loss

The predicted influences and actual changes in loss are
correlated, with PCC=0.6

L Rosel NANYANG

TECHNOLOGICAL

UNIVERSITY
SINGAPORE

37



< | TECHNOLOGICAL
£h=r!) UNIVERSITY

4000 4

3500

3000 -

2500

2000 A

Differential updates

1500 4

“” SINGAPORE
4000 A
3500 A
O
5 . Negatively
s influential client
@
-IE 2500 4
o
% 2000 -
o Qualified clients
— cliento —— client2 — cliento  — client2 ~>
. . 1500 - . .
— clientl - == client3 — clientl - == client3
20 40 60 80 100 0 20 40 60 80 100
Training round Training round

Accuracy, precision and recall are all 100% with threshold §; = 1.50
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Identifying negatively influential clients

Efficiency of training log based identification
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Save both computation and communicatlon costs by orders of
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magnitude
MNIS | CIFAR REAL MOIOUR ESC MNIST CIFAR REAL MOITOR ESC
(a) Computation cost. (b) Communication cost.

No communication cost of training log method, while 209.3MB and 89.7MB for
two basic methods
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Identifying negatively influential samples
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Influence values of data samples calculated using Algorithm 1

42



Identifying negatively influential samples

Accuracy

Dataset (# clients) Algorithm Accuracy | Precision | Recall
D (50) Algorithm 1 91.0% 90.5% 93.2%
M Algorithm 2 92.5% 94.0% 90.8%
D7 (50) Algorithm 1 94.2% 92.0% 91.0%
M Algorithm 2 92.1% 90.3% 92.3%
D™ (15) Algorithm 1 90.5% 75.3% 90.4%
c Algorithm 2 90.1% 77.0% 91.2%
D (50) Algorithm 1 82.1% 70.1% 82.0%
C Algorithm 2 83.0% 71.0% 81.4%
D" (15) Algorithm 1 89.2% 78.5% 92.3%
C Algorithm 2 88.6% 76.4% 90.7%
D (10) Algorithm 1 84.0% 70.3% 80.0%
R Algorithm 2 85.1% 71.6% 81.2%
D (10) Algorithm 1 80.1% 62.0% 80.0%
o Algorithm 2 82.5% 64.1% 81.8%
D™ (4) Algorithm 1 81.3% 72.3% 93.0%
E Algorithm 2 72.0% 73.1% 92.6%

Achieve fairly high accuracy in all settings
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Identifying negatively influential samples

Efficiency
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MNIST CIFAR REAL MOTOR ESC MNIST CIFAR REAL MOTOR ESC
(a) Computation cost. (b) Communication cost.

The costs are orders of magnitude lower, e.g., less than 0.051% computation
cost, 0.060% communication cost

44



Large-scale simulations
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Scalable and robust in large environments
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Large-scale simulations
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Scalable and robust in large environments
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Conclusion
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Conclusion

a Present the framework FLDebugger to accomplish both debugging and
interpretability of FL models from the perspective of training data.

a Design a hierarchical negatively influential clients and samples
identification method with around 90% accuracy.

G Design influence-based clients selection retraining method to facilitate
the model training in terms of higher accuracy and faster convergence.
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Email: anran.li@ntu.edu.sg
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