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CAreFL Overview

 CAreFL: a HFL framework focusing on Contribution in FL.

Traditional HFL framework
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New Solution for Smart Healthcare
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Diverse Collaborations
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Key Concerns - Contribution

For example, a pharmaceutical company may wish to build
p— a model to facilitate drug research by leveraging data from
B: &? multiple hospitals through FL. In order to compensate the
participating hospitals, the pharmaceutical company may
need to offer incentive payouts. How to fairly allocate the
compensation?

?

Fair Contribution Evaluation.

& & [*h
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Al in CAreFL
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Contribution Evaluation Obstacle

« Quantity, Quality, Label Quality

2 ; » wrong label “1”

“Label Quality”

300 images 200 images

“Quantity”
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Contribution Evaluation Obstacle
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Contribution Evaluation Obstacle
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Shapley Value — An Example

 Example: A, B, C works together in a project worth of 100
points. How many points should each of them get?

" )
IR AN #:
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Shapley Value — An Example

+ V(A)=10, V(B)=20, V(C)=30
+ V(AB)=60, V(BC)=50, V(AC)=65, V(ABC)=100
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Shapley Value — An Example

+ V(A)=10, V(B)=20, V(C)=30
+ V(AB)=60, V(BC)=50, V(AC)=65, V(ABC)=100

- B-C-A: (A,B,C)=(50,20,30) Hf ﬁ ﬁ
- C-A-B: (A,B,C)=(35,35,30) | | |
- A-C-B: (A,B,C)=(10,35,55) Hﬁi. ﬁﬁ ﬁ@
. C-B-A: (A,B,C)=(50,20,30) fmﬁ

. B-A-C: (A,B,C)=(40,20,40)
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Shapley Value — An Example

+ A=(10+50+35+10+50+40)/6=195/6=32.5
+ B=(50+20+35+35+20+20)/6=180/6=30
+ C=(40+30+30+55+30+40)/6=225/6=37.5
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Adopting Shapley Value in FL

Federated Learning
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Drawbacks of Shapley Value

Problem:

1. Traditional Shapley requires retraining
FL sub-models.
V(S) = V(M) = V(A(MD®,Dy))
2. 2V FL sub-models’ utility evaluations
V(S) lead to computation overhead.

Shapley Value
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Solution: GTG-Shapley

» Guided Truncation Gradient Shapley (GTG-Shapley) : Fair,
Efficient, and Privacy-preserving.

Key lIdea:
1. Model Reconstruction, instead of Model Retraining

V(S)=V(M5):V(M+ lll )
LES

| Ds|
= V(AM®, D))
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GTG-Shapley: Model Reconstruction

Federated Learning

Federated Learning
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Solution: GTG-Shapley

* Guided Truncation Gradient Shapley (GTG-Shapley) : Fair,
Efficient, and Privacy-preserving.

Key ldea:
1. Model Reconstruction, instead of Model Retraining

D lI
V(S)=V(MS)=V<M+ X )

+ V(A(M“’),DS))

2. Truncating unnecessary sub-model, instead of 2V sub-models.
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GTG-Shapley: Monte-Carlo Truncation

Federated Learning

Federated Learning
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Truncated Shapley approximation
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GTG-Shapley Performance

Empirical studies on 7 existing SV-based FL participant contribution
evaluation approaches under i.i.d. and non-i.i.d settings.

1.1.d non-i.i.d
Duration ED Duration ED

Canonical SV 4.615 - 4.615 -

MR 3.833 | -2.35 3.733 | -2.148

TMC 4.168 | -1.687 4213 | -1.369

GTG_ShapIey Consistently TMR . 3.531 | -2.353 3.678 -2.27
. . . . GroupTesting 4.583 | -0.894 4.557 | -0.667
achieves the highest efficiency FedSV 3784 | 0757 3711 | -0.79
and accuracy under both i.i.d. ——— GTG-Shapley 2.662 | -2.427 2.733 | -2.323

and non- i.i.d. settings. present in log;, scale
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Al in CAreFL

 Focus on Contribution Evaluation
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CAreFL model aggregation
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Results on public benchmark

« Empirical Studies on CAreFL model aggregation with
FedAvg under i.i.d and non-i.i.d settings (CIFAR-10

dataset).
~ea® rw | f —
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CAreFL in detalils

 GTG-Shapley only requires a list of unique
participants’ IDs and computes the
participants' contributions in an efficient
manner and returns the results to the FL
server.

* In addition, it also identifies the -
-and passes this information to the
FL server to improve model aggregation.

 The aggregation function is only relevant
for online FL training during which the
global FL model is still in the process of
being established.
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Contribution Evaluation workflow
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Contribution Evaluation workflow
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Contribution Evaluation workflow
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Deployment and Payoft

 The CAreFL framework has been deployed in Yidu Cloud
Technology Inc. since March 2021 in two lines of their
business: 1) clinical research services, and 2) real-world
trial research services.

Leukemia Biopsy Pneumonia
e Clinical research. e Real-world trial. * Real-world trial.
* A total of 62,000 patients. * Atotal of 5,978 patients * Atotal of 103,455 sample data.
screened, and 2,426 patients
selected.
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User Interface
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C Reset
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DATE: SEP 17, 2021 . .
Leukemia offline v5.0

Leukemia offline v5.0

{1 Topics

This use case is for modeling recurrence risk after

hematopoietic stem cell transplantation for acute

leukemia. A total of 62,000 leukemia patients 1.0

were included in the study, and 2830 samples 0.8
- D oae 5ran were included after screening for acute leukemia

DATE: SEP 15, 202 ‘ eening for @ ‘

0.6
and hematopoietic stem cell transplantation (709 04
Leukemia online LR 91.0% positive cases and 1054 negative cases were I
: 0.2
a e ¢ urr Nit
v5.0 taken as the end point for recurrence within one ; . O -
1 2 3 4 5 6 7 8

Participant Contribution

year after surgery). In terms of feature selection,

239 features were selected to participate in the .
study combined with the medical knowledge of

leukemia. Nonsequential data were processed

by federated normalization and One HOT

coding, while sequential data were processed by

4O

DATE: AUG 13, 2021 time-boxed feature engineering. Serious Non-IID
exists in both sample data distribution and
Biopsy online v7.0 88.9% positive and negative case distribution.
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https://demo.federated-learning.org/
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