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 LEVEL A: How accurately can the 
symbols of communication be transmitted?

(Technical problem)

 LEVEL B: How precisely do the transmitted 
symbols convey the desired meaning?

(Semantic problem)

 LEVEL C: How effectively does the received 
meaning affect conduct in the desired way? 

(Effectiveness problem)

Introduction

Three-level Communication Model[2] Classical Communication system

• Pursue the replica of the source data
• Use the Shannon Theorem as a basis for 

system design
• Information is defined as what

can be used to remove uncertainty
• link capacity is based on mutual 

information in the entropy domain

Broaden the available spectrum
Stack computation modules
Increase access point density 
Increase antenna density
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[2] C. E. Shanonn, “The mathematical theory of communication,” Bell Sys. 
Tech. J., 1949. 3



Semantic Communication

Source dataSource image

Classical communication Semantic  communication

channel

Recovered dataDuplication of data

Joint semantic channel encoding

Joint semantic channel decoding

Source encoding 
Channel encoding

Channel
Source decoding 
Channel decoding
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Semantic Communication

 Semantic communication allows the meaning of the message 
(behind digital bits) to be extracted and exploited during 
communication.
• improving communication efficiency
• providing human-oriented services

5

Presenter Notes
Presentation Notes
A novel communication paradigm, called semantic communication, allows the meaning of the message to be extracted and exploited during communication.
Hence, semantic communication has recently attracted significant interest due to its naturally advantages in terms of improving communication efficiency and providing human-oriented services.





Semantic Communication Challenges

6

 Deploying semantic communications in wireless networks faces a number 
of technical challenges
• How to model the semantic information of data?
• How to evaluate the performance of the semantic communication?
• How to design a semantic-oriented resource allocation scheme?
• Other questions pertaining to semantic encoding/decoding and security 

of semantic communications. 

Presenter Notes
Presentation Notes
However, deploying semantic communications in wireless networks faces several challenges including 
How to model the semantic information of data?
How to evaluate the performance of the semantic communication?
How to design a semantic-oriented resource allocation scheme for wireless networks?
and some other questions.




Semantic Communications Framework
SemCom Model

SemCom differs from traditional Shannon communication 
in that, it incorporates human-like “understanding” and “inference” 

into the encoding and decoding of communication data.

• Semantic representation module
Extract the useful semantic information and remove the 
irrelevant information before transmission.

• Semantic interpretation module
Infer the intended meaning of the sender or the desired 
action to be performed by the receiver

• Background knowledge
Background knowledge of the communication parties has 
to be shared in real-time to ensure that the processes of 
representation and inference can be well-matched. 
Otherwise, semantic noise will be generated.

• Communication goal
In some cases like multi-objective identification, 
possibilities for communication goal should be included in 
the background knowledge and the communication goal 
should instruct semantic extraction to filter out irrelevant 
semantic information transmission according to the 
current communication goal.

* In general, semantic representation (semantic interpretation) and 
semantic encoding (semantic decoding) are combined into a single 
module in the practical system design.

[3] W. Weaver, “Recent contributions to the mathematical theory of communication,”ETC: a 
review of general semantics, pp. 261–281, 1953.

[4] Y. Yang, C. Guo, F. Liu, C. Liu, L. Sun, Q. Sun, and J. Chen, “Semantic communications 
with ai tasks,” arXiv preprint arXiv:2109.14170, 2021. 7



General Semantic Extraction (SE) Methods
Deep Learning-based SE method [5]

Reinforcement Learning-based SE method[6]

Semantic 
channel

End to end manner

Encoding Decoding

• CNN, Transformer, attention 
mechanism. ResNet, GANs…

• Enhance the system robustness at low SNR 
with shorter bit-flow

• Cross Entropy (CE) and Mean Squared Error (MSE) are employed in training, as loss function is generally 
required to be differentiable.

• Non-differentiable semantic metrics like BLEU into SE 
training

Semantic 
channel

End to end manner

Encoding Decoding
(Actor)

Recurrent 
procedure

Self-critic training

• For non-sequential tasks, the decoding process needs to be transformed into a recurrent procedure beforehand

• Self-critic training is employed to address the issue of 
identifying the intermediate rewards

[5] H. Xie and Z. Qin, "A Lite Distributed Semantic Communication System for Internet of Things," in IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 142-153, Jan. 2021
[6] K. Lu, R. Li, X. Chen, Z. Zhao, and H. Zhang, “Reinforcement learning-powered semantic communication via semantic similarity,” arXiv preprint arXiv:2108.12121, 2021. 8



General Semantic Extraction (SE) Methods

Encoding Decoding

KB KBShared KB

Semantic 
channel

End to end manner
Goal

Semantic 
channel

Contextual reasoning Contextual reasoning

Cooperative manner Cooperative manner

Encoding Decoding

Knowledge base-assisted SE method[7]

Semantic-native SE method [8]

• Integrates the KB into the encoder and decoder, aiming to extract 
more relevant information for scenarios with multiple 
communication tasks.

• KB in Semcom is composed of source information, goals of the tasks, and 
the possible ways of reasoning that can be understood, and learned by all 
the communication participants

• Semantic information can be learned from iterative 
communications between intelligent agents, which make 
it feasible to the cases where the semantics vary over 
time and in different contexts.

• Communication parties can be empowered with the capability of 
contextual reasoning to improve communication efficiency

[7] Y. Yang, C. Guo, F. Liu, C. Liu, L. Sun, Q. Sun, and J. Chen, “Semantic communications with ai tasks,” arXiv preprint arXiv:2109.14170, 2021. 
[8] H. Seo, J. Park, M. Bennis, and M. Debbah, “Semantics-native communication with contextual reasoning,” arXiv preprint arXiv:2108.05681, 2021. 9



Semantic metrics
Main types of semantic metricsClassical metrics for communication performance

(BER, SER, delay, throughput…)
Evaluate performance from different network layers
Treat every bit/symbol/packet… as equally important

Semantic metrics for communication performance
(Error-based, AoI-based, VoI-based…)

Measure the performance from the semantic domain
The semantic contribution of each packet is not    
equally important     

Error-based semantic metrics: Error-based semantic metrics are concerned with whether the destination can recover 
equivalent meaning from the received message to that in the transmitted message, measuring the differences in the 
meaning conveyed by the recovered data and source data.

Some 
error-based 

semantic 
metrics 

from NLP 
[6]

[6] K. Lu, R. Li, X. Chen, Z. Zhao, and H. Zhang, “Reinforcement learning-powered semantic communication via semantic similarity,” arXiv preprint 
arXiv:2108.12121, 2021.
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Semantic metrics
AoI-based semantic metrics

• The metric of delay primarily measures the transmission performance without concern for the content of the packets.

• The scheduling schemes based on AoI minimization can highlight the importance of the freshness of the data packets 
and filter out the irrelevant or less important packets given the bandwidth constraints.

• AoI-based metrics are utilized to quantify the staleness of the information received at the destination.

Combined semantic metrics

1t 2t t0
Error penalty function

( )Err ˆ,t tx x∆
ˆt tx x= ˆt tx x≠ ˆt tx x=

1t 2t t0

( )AoI t∆

AoI penalty function

ˆt tx x= ˆt tx x≠ ˆt tx x=

1t 2t t0

( )AoII ˆ, ,t tx x t∆

AoII penalty function

ˆt tx x= ˆt tx x≠ ˆt tx x=

• AoII: integrate AoI into error-based metrics[9]
• QAoI: integrate VoI into AoI-based metrics[10]

In a pull-based system the valuable information

the information only at certain query instants.

QAoI reflects the freshness in the instants 
when the receiver actually needs the data

[10] J. Holm, et al, “Freshness on demand: Optimizing age of information for the query 
process,” in ICC 2021-IEEE, pp. 1–6.

[9] A. Maatouk, et als, “The age of incorrect information: an enabler of semantics-
empowered communication,” arXiv preprint arXiv:2012.13214, 2020.

11Age of Incorrect Information (AoII)

Age of Information at Query (QAoI)
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Presenter Notes
Presentation Notes
In AoI, data packets have the highest value when they are fresh. Consequently, the AoI lets us infer the importance of a packet using its generation time.
We capture more the context of data and their purpose. Accordingly, we can then enable semantics-empowered communication in the network, which is more elaborate than the AoI and the error-based frameworks. This leads us to our proposed metric: the AoII. 

a model that accounts for the discrete time nature of many monitoring processes, by considering a pull-based communication model in which the freshness of information is only important when the receiver generates a query. We then define the Age of Information at Query (QAoI), a more general metric that fits the pull-based scenario, and show how its optimization can lead to very different choices from traditional push-based AoI optimization when using a Packet Erasure Channel (PEC).



Semantic metrics

VoI-based semantic metrics

• Value of Information (VoI) measures the benefit of the data to be transmitted for the communication goal, 
which considers not only the content of the data itself, such the bursts, exceptions, etc., in monitor systems 
but the cost of transmission

• The definition of VoI is largely task-dependent, and it is hard to give a deterministic explicit function for VoI.

• VoI-based metrics are a better fit for goal-oriented communications than error-based metrics

12
E. Uysal, O. Kaya, A. Ephremides, J. Gross, M. Codreanu, P. Popovski, M. Assaad, G. Liva, A. Munari, B. Soret, T. Soleymani, and K. H. Johansson, “Semantic 
Communications in Networked Systems: A Data Significance Perspective,” https://arxiv.org/ftp/arxiv/papers/2103/2103.05391.pdf



Edge-enabled SemCom

transmission-before-understanding

understanding-before-transmission

 Shared knowledge background
 Computationally costly operations for SE 

model training and inference

Limited computing power and energy constraint of 
the end devices result in long latency in training and 
updating of the SE model, thereby degrading 
communication reliability.

Comprehensive knowledge sharing among end devices 
to improve an SE model is at the cost of bandwidth and 
privacy. On the other hand, incomplete knowledge sets 
reduce the generalization capabilities of AI-based SE.

Most SE methods are task-specific and trained 
separately, which is far from brain-like cognition and is 
computationally inefficient due to the redundant work.

Main challenges

1

2

3
13



Edge

Edge-enabled SemCom

Federated learning-enabled SE

Challenge 1 Long latency in training

Challenge 2 High bandwidth consumption for knowledge sharing
Data security and privacy issues

Low communication reliability

Weak generalization capabilities

• Powerful computation 
and caching capabilities

• Proximity to end users

• An authoritative intermediary

background knowledge 
storage; SE model training 

C1

C2 knowledge sharing

With FL, the trained SE model parameters in edge 
servers can be exchanged directly with other edge 
servers with identical tasks to accelerate the training 
process, thereby improving the generalization 
performance of the model in a privacy-preserving 
manner

Federated 
Learning 

(FL)

14



Edge-enabled SemCom

① Edge servers perform the pre-training or fine-tuning for specific SE 
tasks based on each communication group’s shared background 
knowledge. Model parameter exchange and federated aggregation 
are performed over separate communication groups with the same 
communication goals but not a shared knowledge background. 
(Edge server)

② The derived global models are broadcast separately to each 
communication group. (Access point)

③ The source devices generate the raw data. The destination devices 
receive SI. Then, the SE model is utilized to encode and decode SI. 
(End device)

④ The destination devices evaluate the accuracy of SI during the 
communications for data labeling. (End device)

⑤ The newly labeled SI and/or corresponding raw data are uploaded to 
the edge servers. (Access point)

⑥ The edge servers perform the regular updates for the knowledge 
sets according to uploaded information and raw data for fine-tuning 
of the SE model. (Edge server)

Federated learning-enabled SE

15



Edge-enabled SemCom
Efficient SE based on edge-sharing knowledge-graph

Challenge 3
Most SE methods are task-specific and trained separately, which 
is computationally inefficient due to the redundant work.

Knowledge 
graph (KG)

• KG in Semcom is composed of source information, goals of the tasks, and the possible ways of 
reasoning that can be understood, recognized, and learned by all the communication participants.

• The structure of KG is much more flexible than that of having to retrain separate SE models for various 
tasks. Once the KG is constructed, it can be cached at the edge servers to facilitate efficient SE.

Feature map

Store the importance weights of all feature maps for the tasks 
with different identification targets in KG

5235
bbk

Example 1:Feature map-based SE with explainable CNN

Target 1 Target 2 
𝐰𝐰1 𝐰𝐰2

Example 2: SE model training for similar tasks with TL
Record the relationship between similar features of different tasks 
and the related communication goals initialization of SE model.

Task A

Task B

Autonomous vehicle 

Communication for collision avoidance

UAV

Pre-trained
Model

New
Model

Knowledge

16



Semantic-Aware Edge Intelligence
 There are many well-studied deep learning (DL) models that can 

be deployed at end devices to enable the intelligentization of edge 
networks.

 However, DL model optimization comes at the cost of bandwidth 
and energy resources. The situation is exacerbated by the rapid 
growth of edge intelligence networks. 

DL model optimization comes at the cost of bandwidth and 
energy resources. 

In most smart services, intelligent agents are limited to the 
environment where they are deployed. The monotonous 
experience induces overfitting issues, long convergence time, 
and sub-optimal performance of the DL model.

Main challenges

1

2

3 High communication overheads incurred for the sharing and 
exchange of model parameters and policies.

Intelligentization
with Deep Learning 
models

17



Semantic-Aware Edge Intelligence

Semantic-aware Intelligent Agent

 Deep Reinforcement Learning (DRL) is one of the 
promising methods to enable intelligent agent.

 With DRL, each intelligent agent will learn an optimal 
policy for real-time decision making.

 Navigation system of unmanned aerial vehicles [11]

 Effective semantic extraction in SemCom [6]

 Performance of DRL is limited by the monotonous 
experience.

 Collaborative DRL (CDRL) is proposed to allow the agents 
to learn an optimal policy collaboratively by exchanging 
their model parameters or policies.

Collaborative 
Deep Reinforcement 

Learning

[11] W. J. Yun, B. Lim, S. Jung, Y.-C. Ko, J. Park, J. Kim, and M. Bennis, “Attention-based reinforcement learning for real-time 
uav semantic communication,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 
2021, pp. 1–6.

18



Structural
Similarity

Semantic-Aware Edge Intelligence
Semantic-aware Intelligent Agent

 Not all source agents can be selected for training due to the limited bandwidth.
 Hence, the allocation of the bandwidth and the agents’ performance is often jointly 

optimized to maximize the utilities of the bandwidth.
 However, it is challenging to filter the helpful source agents because the agents 

have different environments, tasks, and action spaces.  
 [12] proposes to consider both structural similarity and semantic relatedness when 

selecting the source agents.

 Can be measured by the cosine similarity between the 
agents’ model parameters

 Weakness: cannot capture the similarity of the underlying 
tasks of the agents

 Agents with similar model structures may not share a similar 
task → poor collaboration

 To obtain the semantic relatedness, the target agent is 
trained for a fixed number of steps under the policy of the 
source agent

 The average return value is taken as the semantic
relatedness

Semantic
Relatedness

[12] A. Maatouk, et als, “The age of incorrect information: an enabler of semantics-empowered communication,” arXiv preprint arXiv:2012.13214, 2020. 19



Semantic-Aware Edge Intelligence

Semantic-aware distributed deep learning at wireless edge networks

Federated 
Learning 

(FL)

 Challenge: High communication overheads incurred for the sharing and 
exchange of model parameters and policies

 Therefore, finding an efficient way to compress the model parameters is 
essential to reduce the communication overhead.

 Gradient/Model Parameter Compression:
 Instead of random sparsification, some studies proposed to 

consider the semantics or importance of the parameters during the 
data compression. 

 [13] proposes to drop the gradients with lower magnitude and 
transmit the gradients with higher magnitude. 
 The magnitude of the gradients signify the importance of the gradients, 

with higher gradients deemed to be more important for the weight 
updates. 

 The gradient estimates are sparsified at the transmitter and only the 
positions of the non-zero elements are sent to the receiver. 

 To identify the important parameters, [14] adopts adaptive model 
pruning where the importance of the model parameters are 
measured by their contribution to the future training.

[13] A. MF. Sattler, S. Wiedemann, K.-R. M¨uller, and W. Samek, “Sparse binary compression: Towards distributed deep learning with minimal communication,” in 2019 International Joint Conference on Neural 
Networks (IJCNN). IEEE, pp. 1–8.
[14] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas, “Model pruning enables efficient federated learning on edge devices,” arXiv preprint arXiv:1909.12326, 2019.
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Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence

Semantic-aware distributed deep learning at wireless edge networks

 Classical communication systems aim to improve 
communication efficiency in terms of reducing the 
BER or SER

 Most existing resource allocation frameworks are 
designed to maximize throughput

Conventional Communication Systems

 To consider the semantic importance of 
the bit flow

 Semantic-aware resource allocation to 
maximize semantic performance

Semantic Communication Systems
 SemCom aims to transmit the data relevant to the 

transmission goal
 It is necessary to redesign the resource allocation 

policies

21Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.



Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence

System Model

 We propose a system model in which energy-constrained IoT devices harvest the energy wirelessly for the purpose of text 
transmission [15]

 Different from existing studies that maximize the bit transmission rate, our proposed framework aims to maximize the 
semantic performance of the system

 We consider a wireless powered communication network where there are 

 a hybrid access point (HAP) and 

 multiple wireless powered IoT devices

 The IoT devices are equipped with semantic encoder/decoder to encode/decode semantic information from text data

 For example, semantic information of a sentence with 32 words is encoded as a 2-dimensional matrix with size 32x16, 
where 16 is the number of output dimension of the semantic features.

22Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.



Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence

 Problem

 The HAP can transmit energy to only one IoT device at a specific time

 How do the HAP decide the receiver of the energy?

 Semantic-aware auction mechanism

System Model

23Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.



Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence

 How to decide the bid value?

 Based on the receivable energy, IoT devices can achieve 
different semantic performance.

 Generally, higher energy will result in better semantic 
performance.

 Feature output dimension is reduced when energy received is 
not enough to transmit all features.

 How to decide the winner and payment?

 Deep learning based auction to maximize the revenue of the 
HAP

 Attains the properties of incentive compatibility and individual 
rationality

System Model

24Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.



Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence

 Performance metrics:

 Similarity score, 𝑠𝑠𝑛𝑛, measures the sentence similarity semantically

 BLEU score, 𝐵𝐵𝐵𝐵𝐵𝐵𝑈𝑈𝑛𝑛, measures the exact matching of words in the recovered sentence

 Both scores decrease when output dimension decreases.

 IoT devices will value the energy based on the achievable semantic 
performance, 𝑣𝑣𝑛𝑛 = 𝑗𝑗𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑚𝑚𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝑈𝑈𝑛𝑛

 𝑗𝑗𝑛𝑛 and 𝑚𝑚𝑛𝑛 are the preference of similarity score and BLEU score respectively, and 𝑗𝑗𝑛𝑛 +
𝑚𝑚𝑛𝑛 = 1

System Model

25Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.



Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence

 The winner and price are determined by a deep learning based auction 
mechanism to maximize the revenue of the HAP.

 Experiment results show that the DL-based auction mechanism achieves higher 
revenue as compared to the traditional Second-Price Auction

 By maximizing the revenue of the access point, the price paid by the winning 
IoT device is also maximized. 

 The energy is delivered to the device that values it the most (pay the maximized 
price) to ensure effective SemCom

 The deep learning based auction mechanism attains the desired properties of 
individual rationality and incentive compatibility for the auction.

Results

26Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.



 Fig. 4 shows that increasing wireless energy harvesting time. The reason is that the devices have more energy to send 
the information when longer harvesting time is given.

 Fig. 5 shows that the average bid of devices decreases when they are farther away from H-AP. The reason is that the 
path loss effect is greater when the distance increases.

Results

Z. Q. Liew, Y. Cheng, W. Y. B. Lim, D. Niyato, C. Miao, S. Sun, "Economics of Semantic Communication System in Wireless Powered Internet of Things," in Proceedings of IEEE International Conference on 
Acoustics, Speech, & Signal Processing (ICASSP), Singapore, 22-27 May 2022.

Case Study: Resource Allocation for The Convergence of 
SemCom and Edge Intelligence
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Case Study: Performance Optimization for Semantic Communications: An 
Attention-based Reinforcement Learning Approach

28Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance Optimization for Semantic Communications: An Attention-based Reinforcement Learning Approach,”



Case Study: Performance Optimization for Semantic Communications: An 
Attention-based Reinforcement Learning Approach

 Consider a cellular network in which a BS transmits the meaning of text data to U users using semantic communication 
techniques.

 Semantic information extraction

 Semantic information transmission

 Text recovery

 Performance evaluation

System Model

29Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance Optimization for Semantic Communications: An Attention-based Reinforcement Learning Approach,”

Presenter Notes
Presentation Notes
In our work, we consider a cellular network in which a base station transmits the meaning of text data to users using semantic communication techniques.
The proposed semantic communication framework consists of four parts:
First, the base station extracts the semantic information from the original text 
Then, the BS design a semantic-oriented resource allocation and semantic information selection scheme and transmits partial semantic information to the corresponding user.
Next, each user recovers the text based on the received semantic information.
Finally, we use a semantic similarity model to measure the quality of semantic communications.





 The semantic information of a text data is modeled by a knowledge graph (KG). 

Case Study: Performance Optimization for Semantic Communications: An 
Attention-based Reinforcement Learning Approach

Semantic Information Extraction

• Entity recognition
• Relation classification

semantic triple 

entity entityrelatio
n

30Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance Optimization for Semantic Communications: An Attention-based Reinforcement Learning Approach,”

Presenter Notes
Presentation Notes
I will first introduce the Semantic Information Extraction.
In this work, we use the knowledge graph to represent the semantic information of a text data.
The knowledge graph consists of a set of nodes and a set of edges.
Each node in the semantic information is an entity that refers to an object or a concept in the real word.
Edges are the relations between a pair of entities.
Hence, given a text, we need two steps to extract its semantic information, which are entity recognition and relation classification.
For example, in this text “we propose the stochastic lexicon model to cope with the speech recognizer”, Here, “stochastic lexicon model” and “speech recognizer” are two Entities that can be recognized by an information extraction system.
The relation between them is “used for” that can be obtained by classification algorithms such as convolutional neural network.
An entity-relation-entity triple such as “stochastic lexicon model, used for, speech recognizer” is a semantic triple. 
All semantic triples extracted from the original text constitute the semantic information of the text.





Case Study: Performance Optimization for Semantic Communications: An 
Attention-based Reinforcement Learning Approach

Semantic Information Transmission

Given the transmission delay threshold T, the BS must select partial semantic 
information

whose data 
size

data rate depends on the 
resource allocation for each 

user 

that satisfy

Z({“stochastic lexicon model”, “used for”, “speech 
recognizer”})=3+2+2=7

31Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance Optimization for Semantic Communications: An Attention-based Reinforcement Learning Approach,”

Presenter Notes
Presentation Notes
Next, we consider the semantic information transmission.
Given the transmission delay threshold T, the base station must select partial semantic information to transmit.
The data size of the selected partial semantic information is given as Z that is the number of tokens in the semantic triples.
In this example semantic triple, the first entity consists of three words, the second entity consists of two words, and the relation consists of two words. Hence, Z equals seven.
The data size of the selected semantic information should satisfy the transmission delay constraint.
Here, C is the data rate that depends on the resource block allocation.
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Text Recovery

 Each user recovers the original text using a graph-to-text generation 
model.
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After receiving the partial semantic information, each user recovers the coherent text based on a graph-to-text generation model.
Here, we use an example to show the recovered text.
From this example, we can see that the semantic similarity between the recovered text and the original text depends on the received partial semantic information.
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Semantic Information Metric
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 The semantic accuracy of recovered text

 The semantic completeness of recovered text

 The proposed metric of semantic similarity (MSS)
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To measure the quality of the semantic communication, we proposed a metric of semantic similarity that jointly capture the semantic accuracy and semantic completeness of the recovered text.
As the exiting BLEU metric is defined, the semantic accuracy and semantic completeness are based on word matching between the recovered text and the original text.
I use an example to explain the semantic accuracy, completeness and the proposed MSS more clearly.
For example, the original text at the base station is "I sit on a chair." and the text recovered by the user is "I sit.”
A() equals one means the recovered text is accurate.
R() is less than one means the recovered text is not complete.
The proposed MSS use a parameter \phi to adjust the weights of the semantic accuracy and completeness.
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Total Metric of Semantic Similarity (MSS) maximization problem 
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resource allocation

semantic information
selection

depends on

• How to build the relationship between the non-
mathematical optimization variables and the 
objective function?

• The objective function is calculated based on the 
texted recovery model.

Evaluate the importance of the semantic triples!
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The problem is formulated as a total MSS maximization problem that depends on the resource allocation and partial semantic information selection.
This MSS maximization problem is challenge to solve, since it’s difficult to build the relationship between the non-mathematical optimization variables and the objective function.
In addition, once the resource allocation and partial semantic information are determined, the objective function is calculated based on the texted recovery model. 
Hence, the BS could evaluate the importance of semantic triples in the semantic information and build the relationship between the importance distribution and the total MSS so as to improve the total MSS.
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Attention RL  for Semantic Information Selection and Resource Allocation 
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 The importance distribution of semantic information
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To solve this problem, we proposed a RL algorithm integrated with the attention network, called attention proximal policy optimization.
The process of the proposed algorithm using the attention network to obtain the importance distribution of each semantic information is shown.
The attention network first calculates the correlation between different triples and the original text, and the correlation is defined as the importance of a semantic triple in the semantic information.
Then, the attention network normalize the correlations to get the importance distribution.
The resource allocation policy depends on the importance distributions.
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Attention Policy Gradient (APG)
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Components of the attention policy gradient (APG)
 Agent: the BS

 Actions: , 

The partial semantic information  to be 
transmitted:

• the most important triples in

• satisfying 

 States: 

 Policy: 

 Reward:

𝜽𝜽 is parameters of a DNN that used to map 
the input importance distributions and the 
output resource allocation.  
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Given the importance distributions of triples, we optimize the policy that used to determine the resource allocation and the partial semantic information to be transmitted.
The agent is the base station.
Action is resource allocation for each user.
Here, once the base station determines the resource allocation,the base station will transmit the most important triples in the extracted semantic information until the delay threshold.
The state is the importance distribution of each user's semantic information.
The policy is also realized by a DNN and used to map the input state and the output action.
The reward is the total MSS.
We use the SGA method to iteratively optimize the policy so as to maximize the reward.
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Simulation Results
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This figure shows an example of the original text, the transmitted semantic information, and the recovered text.
As the correlations between this blue semantic triple and the words in the original text increase, the color used to mark the tokens changes from white to blue.
The transmitted partial semantic information is selected according to the order of triple importance.
This figure shows that the proposed semantic framework can significantly reduce the size of data transmitted over wireless links.
This figure also shows that the recovered text covers the main meaning of the original text.
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Simulation Results
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 Two baselines:
• baseline a): randomly selects 

semantic triples;
• baseline b): directly transmits 

the original text data.

 The proposed APPO algorithm 
can improve the total MSS.
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This figure shows how the total MSS changes as the number of resource blocks varies.
The proposed APPO algorithm can achieve up to 22.1% and 1-fold gains in terms of the total MSS compared to baselines a) and b), respectively. 
The 22.1% gain stems from the fact that the proposed APPO algorithm can analyze the importance of each semantic triple, so as to transmit the most important semantic triples that can significantly improve the MSS. The 1-fold% gain stems from the fact that the proposed algorithm uses knowledge graph to model semantic information thus significantly reducing the redundant information in the original data. 




Case Study: Performance Optimization for Semantic Communications: An 
Attention-based Reinforcement Learning Approach

Simulation Results
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 Baseline:
• APG algorithm: traditional 

policy gradient algorithm 
integrated with attention 
network;

 Compared to the APG algorithm, 
the proposed APPO algorithm 
converges faster.

Presenter Notes
Presentation Notes
This figure shows the convergence of the proposed APPO algorithm in a semantic communication-enabled network 
Compared to the traditional PG algorithm that requires about 300 iterations to reach convergence, the proposed APPO algorithm converges after 100 iterations. This stems from the fact that the proposed APPO algorithm can adjust the learning rate at each iteration so as to speed up the convergence. 




General Future Directions 

Semantic-noise based privacy preserving

Variable-length semantic encoding

Interpretability and explainability of SE
As unexpected information often appears in communications, the black-box nature of SE method hinders its 
implementation. Hence, interpretability in SE needs to be studied to associate possible causes and results and 
to guide improvements to the SE model. Meanwhile, explainability in SE can identify the SI hidden in deep nets, 
which paves the way to the KG-based efficient SE across multiple modalities and tasks. However, most existing 
SE methods are not explainable.

For the communication groups with similar background knowledge and communication goals, eavesdropping 
becomes easy. Considering the success of covert communication in which artificial noise is introduced for 
secure wireless transmissions, artificially increasing the mismatch to generate semantic noise may also serve as 
a potential method to enable secure SemCom.

Existing works merely consider the dynamic channel gains in SE without the concern of resource constraints. 
However, in a multi-user scenario, the fluctuation in resources, such as available spectrum and transmit power, 
can have a non-negligible impact on SemCom performance. The methods of achieving variable-length 
semantic encoding to cope with dynamic network resources remain thus to be an open research question.
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General Future Directions

Semantic Compression of Model Parameters

DL-based SE for Task Similarity
 For future works, the semantic relatedness between the agents can be extracted using a deep learning 

network. The deep learning network can take the model parameters of the agent as input and output 
embeddings as the semantic representations of the agent. 

 The network can be trained by minimizing the similarity between the output embeddings of different tasks, 
and maximizing the similarity of the output embeddings of the similar tasks. In this way, the semantic 
representation can be extracted to calculate the task similarity between the agents. As such, the most 
efficient source agents can be selected for the fixed bandwidth usage. 

 Future works can adopt semantic-aware model parameter exchange between the end devices. Such a 
system can follow the semantic encoder/decoder structure in [5] where the input parameters are first 
encoded by the transmitter using a semantic encoder and a channel encoder, before sending the encoded 
information to the receiver. The received signal is decoded by channel decoder and semantic decoder at the 
receiver to reconstruct the original data. 

 For semantic text transmission, the SI sent by the transmitter carries the information used to reconstruct the 
text data at the receiver’s end. In the case of CDRL, the encoded SI is the essential information to 
reconstruct the model parameter at the receiver’s end.
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